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A transition from a smooth torus to a chaotic attractor in quasiperiodically forced dissipative systems may
occur after a finite number of torus-doubling bifurcations. In this paper we investigate the underlying bifurca-
tional mechanism, which is responsible for the termination of the torus-doubling cascades on the routes to
chaos in invertible maps under external quasiperiodic forcing. We consider the structure in the vicinity of a
smooth attracting invariant curvestorusd in the quasiperiodically forced Hénon map and characterize it in terms
of Lyapunov vectors, which determine the directions of contraction for an element of phase space in a vicinity
of the torus. When the dependence of the Lyapunov vectors upon the angle variable on the torus is smooth,
regular torus-doubling bifurcation takes place. On the other hand, we observe a transition consisting of the
appearance of a nonsmooth dependence of the Lyapunov vectors upon the angle variable on the torus. We show
that torus doubling becomes impossible after this transition has occurred, although the attractor of the system
still remains a smooth torus. We illustrate how the transition terminates the torus-doubling bifurcation line in
the parameter space with the torus transforming directly into a strange nonchaotic attractor. We argue that the
transition plays a key role in mechanisms of the onset of chaos in quasiperiodically forced invertible dynamical
systems.
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I. INTRODUCTION

The investigation of transition mechanisms from quasip-
eriodic dynamics to chaos is one of the central topics in
contemporary nonlinear science. Starting with the classic
works of Landauf1g and Ruelle and Takensf2g, many re-
searchers have undertaken theoreticalf3–9g and experimental
f10–13g studies of this problem. As is well known, the image
of regular quasiperiodic motion in the phase space of a dis-
sipative dynamical system is a smooth attracting ergodic
torus. One convenient way to investigate mechanisms for the
destruction of an ergodic torus is to consider quasiperiodi-
cally forced systems: in such systems the frequency ratios
appear as independent parameters and can be effectively con-
trolled in both numerics and in experiments. Quasiperiodi-
cally forced systems have become popular models for studies
of the transition from quasiperiodicity to chaos after the dis-
covery of a strange nonchaotic attractorsSNAd by Grebogiet
al. in 1984f14g. An SNA typically appears in the intermedi-
ate region between order and chaos and possesses a mixture
of features of regular and chaotic attractors. Attractors of this
type are nonchaotic in the sense that only nonpositive
Lyapunov exponents occur, but they possess a fractal-like
geometrical structure, which justifies the term “strange.”sFor
more details on the structure and properties of SNA, see
Refs.f15–22g.d

One of the important observations, made in the 1980s by
Anishchenkoet al. f8g and Kanekof9g, is that the destruction
of a smooth torus and the appearance of chaos may be pre-
ceded by a finite number of torus-doubling bifurcations.

Therefore, much attention is focused on numericalf23–33g
and experimentalf34,35g studies of dynamical transitions in
period-doubling systems under the effect of an external qua-
siperiodic force. When the amplitude of the external quasip-
eriodic force is fixed and the nonlinearity parameters of the
model system are varied, a sequence of torus-doubling bifur-
cations can occur. Such a sequence is typically terminated by
the onset of an SNA, followed by a further transition to
chaos. The number of torus-doubling bifurcations in the se-
quence depends upon the amplitude of the external quasip-
eriodic force. For the case of sufficiently large amplitudes, a
simple smooth torus may transform into an SNA. For small
amplitude values, several torus-doubling bifurcations may
occur before the SNA arises. The number of torus-doubling
bifurcations grows as the amplitude of the quasiperiodic
force is decreased. However, this number appears to be finite
for any fixed nonzero amplitude.sSee numerical results pre-
sented in Ref.f24g.d An infinite bifurcation sequence can
occur only for the case of the driving force amplitude equal
to zero, as follows from the analysis developed in Ref.f23g.
Thus an important issue is to understand the reason for the
termination the torus-doubling cascades in the quasiperiodi-
cally forced systems.

For noninvertible unimodal maps the mechanism of the
termination of torus-doubling cascades appears to be closely
associated with the critical behavior studied by Kuznetsovet
al. f26g. The line of torus-doubling bifurcation in the param-
eter space of the quasiperiodically forced logistic map termi-
nates at a special critical point, called the torus-doubling ter-
minal sTDTd. sThe corresponding values of the quasiperiodic
force amplitude and the nonlinearity parameter will hereafter
be referred to as the critical parameter values.d The termina-
tion of the bifurcation line is associated with the tangency of*Electronic address: chaos777@rol.ru
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the attractor with the line of zero derivative of the map. This
event changes the character of the bifurcation, which be-
comes phase dependent and the attractor of the system be-
comes nonsmooth. For amplitudes of the quasiperiodic force
above the critical value the sign of the derivative depends
upon the angle variable on the torus; therefore, regular torus-
doubling bifurcation becomes impossible. Numerical analy-
sis shows that for small amplitudes of the quasiperiodic force
a similar mechanism terminates the lines of doubling bifur-
cations for doubled, quadrupled, and other tori of this system
f36g. Thus we can conclude that noninvertibility plays the
role of a “terminator” for the torus-doubling cascades on the
route to chaos in the quasiperiodically forced logistic map as
well as for other noninvertible 1D maps of the same univer-
sality class.

It appears that the structure of the parameter space de-
scribed above occurs in different period-doubling systems
under external quasiperiodic forcing. For example, analo-
gous transitions were observed in numerical experiments on
a nonlinear dissipative oscillator under external two-
frequency driving with irrational frequency ratiof37g. The
Poincaré map in the phase space of such an oscillator is a
smooth invertible three-dimensionals3Dd map with one qua-
siperiodic variable. The most widely known example of such
a kind is a quasiperiodically forced Hénon mapf30,31g. A
smooth closed invariant curvestorusd in the phase space of
this map corresponds to the Poincaré section of the torus in
the phase space of a biharmonically forced oscillator. Note
that a reduction of the invertible 2D Hénon map in the limit
of strong dissipation produces a noninvertible 1D logistic
map. On the other hand, for dynamical systems determined
by differential equations or for invertible maps, the mecha-
nism of termination of the torus-doubling cascades obviously
must be different from the above-mentioned loss of invert-
ibility, which works only for noninvertible forced 1D maps.

In order to understand the underlying mechanism of the
termination of the torus-doubling cascades in invertible sys-
tems, we consider in this paper the Hénon map driven by an
external quasiperiodic force with an irrational frequency pa-
rameter, chosen to be the inverse golden mean. Since the
torus-doubling bifurcation is local, we focus our attention on
a study of the vicinity of a smooth attracting invariant curve
storusd in this system. Such a vicinity can be characterized in
terms of Lyapunov vectors, which determine the directions
of contraction for an element of phase volume around the
attracting torus. The values of the Lyapunov vectors depend
upon the angle variable on the torus. If the dependence of the
Lyapunov vectors upon the angle variable is smooth, a torus-
doubling bifurcation is possible. Alternatively, we observe a
new transition, associated with the onset of a nonsmooth
dependence of the Lyapunov vectors upon the angle variable
on the torus. It is important to note that in a typical case the
attractor of the system remains a smooth torus after such a
transition. We show that the latter transition makes a regular
torus-doubling bifurcation impossible and terminates the line
of this bifurcation in the parameter space. We also argue that
other regularsphase-independentd torus bifurcations such as
symmetry breaking or inverse saddle-node bifurcation be-
come impossible after the new transition has occurred.
Therefore, further evolution of the attracting torus under

variation of the parameters of the system is associated with
the appearance of an SNA via phase-dependent mechanisms
ssuch as torus fractalizationf25,30g, intermittencyf32,33g, or
the Heagy and Hammel scenariof24,30gd or of a chaotic
transient. We argue that an analogous mechanism may be
responsible for the prevention of doubling bifurcations for
doubled, quadrupled, and other tori of the model system.

The paper is organized as follows. In Sec. II we define
Lyapunov vectors for quasiperiodic trajectories on a torus
and use them for a description of the mechanism of torus-
doubling bifurcation. In Sec. III we present numerical data
and discuss smooth and nonsmooth dependences of
Lyapunov vectors upon the angle variable for different pa-
rameter values of the model system. In Sec. IV we analyze
dynamical transitions, which include doubling of tori, in the
parameter space of the model system. In Sec. V we explain
the mechanism which prevents the torus-doubling bifurca-
tion from the viewpoint of the method of rational approxi-
mation f15g. In the Conclusion we discuss the role of the
new phenomenon associated with the appearance of nons-
mooth dependences of the Lyapunov vectors upon the angle
variable on the torus in a general picture of transitions from
quasiperiodicity to chaos, which involve different bifurca-
tions of tori.

II. CHARACTERIZATION OF THE TORUS VICINITY:
LYAPUNOV VECTORS AND INVARIANT 2D

MANIFOLDS

Let us start with an autonomous Hénon map

xn+1 = a − xn
2 + yn,

yn+1 = bxn, s1d

where 0,b,1. Let sx0,y0d be a fixed point of this map. The
multipliers of the fixed point are defined asm1,2
=sS±ÎS2−4Jd /2, whereJ=−b is the determinant of the Ja-
cobi matrix of the maps1d and S=−2x0 is the trace of this
matrix at the fixed pointsx0,y0d. Due to our choice ofb, the
condition S2−4J.0 holds. The last condition implies that
the fixed point possesses two different real multipliers
m1,2sm1m2=−bd, and, hence, the point is either a saddle or a
stable node. For definiteness, let us suppose thatum1u. um2u.

In the case of the saddle pointsum1u.1, um2u,1d, there
are two invariant 1D manifoldssstable and unstable onesd,
which are represented by smooth invariant curves in the
phase planefsee Fig. 1sadg. The two eigenvectorsk1,2 of the
Jacobian matrixsLyapunov vectorsd give the directions tan-
gent to the invariant manifolds at the fixed point.

When um1,2u,1, the fixed point is a stable node. In this
case also we can define two Lyapunov vectors, which deter-
mine the directions of contraction for an element of phase
space in a vicinity of the nodal fixed point. Theleading
vectork1, associated with the multiplier of largest modulus,
is tangent to the set of stable invariant manifolds, as shown
in Fig. 1sbd. sSee also Ref.f38g.d The vectork2, referred to
as thenonleadingeigenvector, is tangent to the single “non-
leading” stable invariant manifold.
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Now we modify the maps1d by adding an external qua-
siperiodic force and consider the model map inR23T1:

xn+1 = a − xn
2 + yn + « cos 2pun,

yn+1 = bxn,

un+1 = un + v smod 1d, s2d

wherev is an irrational number, which we set equal to the
inverse golden mean:v=sÎ5−1d /2. For«=0 maps2d has a
trivial invariant curvestorusd

T0:hsx,y,ud P R2 3 T1ux = x0,y = y0,u P f0,1dj.

Obviously, in this case a structure of a vicinity of the torus
T0 will be determined by multipliers of the fixed point
sx0,y0d.

If um1u.1 and um2u,1, the torusT0 is of a saddle type,
and there are two invariant manifolds, unstable and stable,
which we denote asWu andWs, respectively. The manifolds
are represented by smooth 2D surfaces in the 3D phase
space, as shown in Fig. 1scd. At any point of the saddle torus
one can define two directions, which are tangent to the in-
variant manifolds and orthogonal to the axis of the angle
variable u. For «=0 these directions are given simply by
the Lyapunov vectorsk1,2 of the fixed pointsx0,y0d of the
map s1d.

Likewise, if um1,2u,1, the torusT0 is of a stable nodal
type, and, again, at any point of a stable nodal torus one can
define two Lyapunov vectors, which determine two direc-
tions of contraction for an element of phase space in vicinity
of the torus. The rate of contraction in each direction is char-
acterized by the respective Lyapunov exponentss1,2

= lnum1,2ud. If we introduce 2D stable invariant manifolds as-
sociated with the nodal torusfas extensions of the 1D invari-
ant manifolds of the nodal fixed point of the maps1dg, then
the two Lyapunov vectorsk1,2 will define two directions tan-
gent to the manifolds and orthogonal to the axis of angle

variableu fsee Fig. 1sddg. The leading vectork1 is tangent to
a continuum of stable 2D manifoldsswe arbitrarily choose
one of them and refer it to asW1d, while the vectork2 is
tangent to one special nonleading stable manifoldW2. The
remainder of this article is concerned with the stable nodal
torus and its vicinity.1

Now let «Þ0. For typical values ofa and b apart from
the bifurcation points of the maps2d, a small quasiperiodic
perturbation will not destroy the torus and the smooth 2D
manifolds. Thus, for small nonzero« the maps2d possesses a
nontrivial torus

T:hsx,y,ud P R2 3 T1ux = xsud,y = ysud,u P f0,1dj; s3d

the stable 2D manifoldsW1,2 in a vicinity of the torusT
become distorted, but remain smooth 2D surfaces. The
Lyapunov vectors, which are tangent to the manifolds and
orthogonal to theu axis, now depend on the angle variableu:
k1,2=k1,2sud. While the manifolds are smooth, the vector
functions k1,2sud=skx

1,2sud ,ky
1,2sud ,0d remain differentiable.

As the parameter« increasesfother parameters of the map
s2d we suppose to be fixedg, the plots of the functionskx,y

1,2sud
may become more and more distorted, until these functions
lose differentiability at some critical value of«. The appear-
ance of nonsmooth dependences of the Lyapunov vectors

1Note that, besides stable nodes and saddles, a dissipative map
may possess a fixed point of focal type, which is characterized by
complex conjugate multiplierssm1=m2

*d. In this case the addition of
the quasiperiodic variableu gives a smooth torus that has a vicinity
of focal type. The Lyapunov vectors are not defined in the focus.
Therefore, the 2D invariant manifolds turn around the stable torus
of focal type. In fact, the one time iterated Hénon maps1d does not
possess focal fixed points atb.0. However, it has stable periodic
orbits of periods 2n, nù2, which are characterized by complex
values ofm1,2. Further we will observe some quasiperiodic regimes
arising from focal periodic orbits, although they do not play a sig-
nificant role in the present work.

FIG. 1. Schematic drawings of
the fixed points, tori, and associ-
ated invariant manifolds. sad
Saddle fixed point of the maps1d.
sbd Nodal fixed point of the map
s1d. scd Saddle torus of the map
s2d. sdd Nodal torus of the map
s2d. sed Parent saddle torusT and
the newly-born double torus 2T.
The detailed explanations are pro-
vided in Sec. II of the paper.
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k1,2 upon the angle variableu apparently provides evidence
for the destruction of the smooth 2D manifolds in a vicinity
of the torusT.

Let us discuss the role of Lyapunov vectors and 2D in-
variant manifolds in the mechanism of the torus-doubling
bifurcation in the maps2d. On the threshold of bifurcation,
the map possesses a nodal torusT, shown in Fig. 1sdd. As a
control parameter of the system passes through the bifurca-
tion value, the nodal torusT loses stability and becomes of a
saddle type. The loss of stability of the torusT occurs along
the less stable leading directionk1sud, as the corresponding
Lyapunov exponents1 passes through zero. A pair of smooth
curves 2T s“double torus”d appears in a vicinity of 2T; a
trajectory on the double torus visits two curves alternately.
The leading manifoldW1 of the parent nodal torusT trans-
forms after bifurcation into the unstable manifoldWu of the
saddle torusT. The newly born double torus 2T belongs to
the smooth manifoldWu, as shown in Fig. 1sed. Note that the
vector functionk1sud determines the direction tangent toWu.
Hence, immediately after the bifurcation the vector function
k1sud determines in linear approximation the direction from
the saddle torusT to the newly born double torus 2T. Since
all the tori sT and 2Td are smooth and they belong to the
smooth manifoldWu, the dependencek1sud will be also
smooth. On the other hand, the nonsmooth dependence of
k1sud upon u would imply that a newly born objectsborn
instead of 2Td must also be nonsmooth as it belongs to a
nonsmooth manifoldWu. Thus, existence a smooth vector
function k1sud=(kx

1sud ,ky
1sud ,0) appears to be a necessary

condition for a possibility of the regular torus-doubling bi-
furcation. The loss of smoothness of the dependencek1sud
provides us with evidence that torus-doubling bifurcation be-
comes impossible. Let us consider now the methods for nu-
merical computation of the dependencesk1,2sud and for the
analysis of their smoothness.

First, let us turn to a case when the functionsk1,2sud are
smooth. Let there be a pointsx0,y0,u0d, which belongs to the
toruss3d. In order to define the Lyapunov vectorsk1,2su0d at
this point, we iterate maps2d starting fromsx0,y0,u0d and
obtain an orbitsx0,y0,u0d ,sx1,y1,u1d , . . . ,sxn,yn,und. Let a
vectork0 be collinear to the vectork1su0d for k2su0dg at the
initial point. After one iteration of maps2d, this vector will
be mapped into the vectork1, which is collinear to the vector
k1su1d for k2su1dg at the pointsx1,y1,u1d. The evolution ofk0

is described by the Jacobi matrix of the maps2d:

k1 = Ĵsx0,y0,u0dk0. s4d

After n iterations the operatorĴsnd of evolution of the vector
is

Ĵsnd = Ĵsxn−1,yn−1,un−1dĴsxn−2,yn−2,un−2d ¯ Ĵsx0,y0,u0d.

Thus, we obtain a sequence of vectorsk1,k2, . . . ,kn, with

kn= Ĵsndk0, which are collinear to the Lyapunov vectors at the
respective points of the orbit. Now, in order to define the
initial vectork0, we consider a subsequence of the trajectory
points which converges to the initial pointsx0,y0,u0d. Since
we have chosenv equal to the inverse golden mean, we take

the subsequencesxF0
,yF0

,uF0
d , . . . ,sxFk

,yFk
,uFk

d, where Fk

=1,2,3,5,8,13, . . . are theFibonacci numbers. Under the
assumption of smoothness ofk1,2sud, the sequence of vectors
kF0

, . . . ,kFk
also converges to the vectork0 at the initial

point. Hence, we come to a conclusion that

kFk
= ĴsFkdk0 → mFk

k0 as k → `, s5d

where mFk
is a coefficient. Thus, we obtain an eigenvalue

problem for the matrix

ĴsFkd = 3J11 J12 J13

J21 J22 J23

0 0 1
4 .

One of the eigenvectors of the matrixĴsFkd corresponds to a
trivial unit eigenvalue associated with the angle variable. The
other two eigenvectors have the formmFk

1,2=smx
1,2,my

1,2,0d,
orthogonal to the axis of the angle variable. Hence, at the
point sx0,y0,u0d, one can define two Lyapunov vectors
k1,2su0d as the limits for eigenvectorsmFk

1,2 at k→`. Analo-
gous arguments can be developed for any pointsx,y,ud of
the toruss3d. Note that relations5d makes it possible to de-
termine two nontrivial Lyapunov exponents for a quasiperi-
odic trajectory on the torus as

s1,2= lim
k→`

s1/FkdlnumFk

1,2u.

In the limit k→` the values ofs1,2 do not depend on the
initial phaseu0 and characterize the entire torus, since the
quasiperiodic trajectory fills the torus densely due to ergod-
icity of the quasiperiodic motion.

In practice, the method of definition of the Lyapunov vec-
tors described above is inconvenient for numerical computa-
tions. Moreover, the method was based on an assumption of
differentiability of k1,2sud. On the other hand, we should take
into account that such dependences can be either differen-
tiable or nondifferentiable. Nevertheless, due to the possibil-
ity of definition of k1,2 as the eigenvectors of an operator
fsee Eq.s5dg, we can suggest another simple way for their
determination.

Let us suppose that the vector functionsk1,2sud cor-
responding to the leading and nonleading Lyapunov
vectors are normalized to unity at any point of the torus
s3d. We can consider the evolution of an arbitrarily
chosen vector k0=skx,0,ky,0,0d along the trajectory
sx0,y0,u0d ,sx1,y1,u1d , . . . ,sxn,yn,und under iterations of the
linearized maps4d. Multiplying by the Jacobian matrix at
each point of the trajectory and then normalizing, we obtain
the map

kn+18 = Ĵsxn,yn,undkn,

kn+1 = ukn+18 u−1kn+18 ,

un+1 = un + v smod 1d. s6d

As we know, in a typical case, after a sufficiently large num-
ber of iterations, an arbitrarily assigned vector tends to the
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direction corresponding to the largest Lyapunov exponent
se.g., Ref.f39gd. Since we have chosenk0 initially orthogo-
nal to the phase axis, this direction will be given by the
leading Lyapunov vectork1sud. Thus,kn tends to ±k1sund as
n→`. A plot of the function ±k1sud may be interpreted as an
image of the attractor of the maps6d. Note that for any qua-
siperiodic trajectory on the toruss3d the valuesxn andyn are
functions of the angle variableun:xn=xsund ,yn=ysund. This
fact makes it possible to consider the maps6d as a usual
quasiperiodically forced map and allows us to use standard
methods for the analysis of its dynamical regimes. For in-
stance, to obtain the leading Lyapunov vectork1su0d at the
point sx0,y0,u0d on the torus, we should start iterating Eqs.
s6d from the initial angleu−nf=u0−nvsmod 1dg, wheren is
sufficiently large, with an arbitrarily chosen initial condition
k−n.

Now let us consider possible types of attractors of the
map s6d. In the context of further numerical analysis, the
following three cases appear to be essential.

sC1d The map has two attractors represented by smooth
invariant curves ±k1sud, which are symmetric with respect to
the axis of angle variableu.

sC2d The map has one attractor, which consists of two
smooth curves ±k1sud, visited alternately at iterations of the
map.

sC3d The attractor of the map isstrange nonchaotic, rep-
resented by the nonsmooth2 and double-valued function
±k1sud.

In casessC1d andsC2d the functionk1sud is differentiable.
It implies a smooth character of the dependence of the lead-
ing Lyapunov vector upon the angle variable on the toruss3d.
The appearance of a strange nonchaotic attractor in the map
s6d fcasesC3dg provides evidence of a loss of differentiability

of the vector functionk1sud. Hence, in the last case, the
dependence of the leading Lyapunov vector upon the angle
variable is nonsmooth.3

In the same way, we can determine the nonleading
Lyapunov vectork2sud, which corresponds to the second
nontrivial Lyapunov exponent. For this, we invert the map
s2d and consider an evolution of some arbitrary chosen
vector k0 under iteration of the inverse map along the
quasiperiodic trajectory on the toruss3d. Taking into account
a normalization of the vector, we represent the evolution
map as

kn+18 = Ĵ−1sxn,yn,undkn,

kn+1 = ukn+18 u−1kn+18 ,

un+1 = un − v smod 1d. s7d

HereĴ−1sx,y,ud is the Jacobian matrix of the map inverse to
the quasiperiodically forced Hénon maps2d. Since the maps
s6d and s7d are inverse with respect to each other, they pos-
sess identical invariant sets. Note that the attracting invariant
set of Eqs.s6d fdefined as ±k1sudg is a repellor for the map
s7d, while the attractor of the maps7d fgiven by ±k2sudg
appears to be the repelling invariant set of the maps6d.
Hence, under iterations of Eqs.s7d the vectorkn will tend to
±k2sund asn→`.

2According to the results of Starkssee Ref.f19gd, an SNA cannot
be the graph of a continuous function. Strictly speaking, the func-
tion ±k1sud must be nonsmooth and upper-lower semicontinuous.

3In a general case we should consider one more possibility:sC4d
the attractor of the maps6d represents a three-frequency torus. In
this case the vector-functionk1sud cannot be defined. This situation
takes place when the quasiperiodic forcing is added to a system
with a focal fixed point. As we has already mentioned, the Hénon
map does not possess such points forb.0. However, the three-
frequency quasiperiodic regime may be observed in the systems6d
when we investigate the structure of the vicinity of a double torus
2T or quadruple torus 4T of the maps2d.

FIG. 2. sad Attracting torus of
the maps2d at a=0.55,«=0.6. sbd
Plot of the function kx

1sud at a
=0.55,«=0.6 fonly odd iterations
of the map s6d are plottedg. scd
Plot of the function kx

2sud at a
=0.55,«=0.6 fimage of the torus
of the maps7dg. sdd SNA of the
map s6d at a=0.559, «=0.6. sed
SNA of the maps7d at a=0.559,
«=0.6. sfd Attracting torus of the
maps2d at a=0.559. We have cho-
sen b=0.5 for these and all the
following figures.

SMOOTH AND NONSMOOTH DEPENDENCE OF LYAPUNOV… PHYSICAL REVIEW E 71, 016206s2005d

016206-5



Thus, the problem of the analysis of the dependences of
leading and nonleading Lyapunov vectorsk1,2 upon the angle
variableu is reduced to the analysis of the attractors of the
mapss6d ands7d in the space of Lyapunov vectors. Smooth-
ness of the attractors represented by vector functions
±k1,2sud implies smoothness of the dependences of
Lyapunov vectors on the toruss3d upon the angle variable.
The onset of strange nonchaotic attractors in the mapss6d
and s7d indicates the loss of smoothness of the dependences
of Lyapunov vectors ±k1,2 upon the angle variableu and, as
a consequence, the destruction of smooth 2D invariant mani-
folds in a vicinity of the nodal toruss3d.

III. LOSS OF DIFFERENTIABILITY OF THE
DEPENDENCE OF LYAPUNOV VECTORS UPON

THE ANGLE VARIABLE

Let us fixb=0.5 and«=0.6, and consider the evolution of
the attractor of the maps2d and the attractors of Eqs.s6d and
s7d in the Lyapunov space under variation of the parametera.

At a=0.55 the attractor of the maps2d is a smooth torus
fFig. 2sadg. The attractor of the maps6d is a double torus; i.e.,
it is represented by a pair of smooth curves ±k1sud, which
map onto each other under iteration. The resulting plot of the
function kx

1sud is presented in Fig. 2sbd. The maps7d pos-
sesses two attracting invariant tori ±k2sud, which are sym-
metric with respect to the axis of angle variableu. The plot
of the functionkx

2sud is shown in Fig. 2scd. One can see that
both functionskx

1,2sud are smooth: the Lyapunov vectors de-
pend smoothly upon the angle variableu. As a is increased,
the smooth vector functions ±k1,2sud corresponding to attrac-
tors of the mapss6d ands7d become more and more distorted
at small scales, until strange nonchaotic attractors arise si-

multaneously in Eqs.s6d and s7d at the critical valueac
.0.559. The plots of the functionskx

1,2sud at a=0.559 are
presented in Figs. 2sdd and 2sed. Thus, the dependences of
the Lyapunov vectors upon the angle variable become non-
differentiable. Note that the attractor of the maps2d still re-
mains a smooth torus, as shown in Fig. 2sfd. The transition to
SNA in this maps2d occurs only ataf .0.656.

A smooth torus characterized by nonsmooth dependences
k1,2sud can be observed for all values of the parametera
within the interval aP fac,afd. Numerical analysis shows
that besides this interval there are other intervals ofa with
nonsmooth dependences of the Lyapunov vectors upon the
angle coordinate:aP f0.266,0.416g and aP f0.484,0.521g.
However, we emphasize that this is the first intervalfac,afd,
which is important for an explanation of the direct transition
from smooth torus to SNA without torus-doubling bifurca-
tion in the systems2d. Nonsmooth dependence of the
Lyapunov vectors upon the angle variable foraP fac,afd
makes the torus-doubling bifurcation impossible, and in this
case the smooth torus directly transforms into the SNA via a
gradual fractalizationsas described in Ref.f25gd.

Now let us consider the process of destruction of smooth
dependencesk1,2sud in some detail. For this purpose we need
to calculate the anglewsud between leading and nonleading
Lyapunov vectorsk1,2 on the torus as a function ofu. Since
we have chosenuk1,2sudu=1, we immediately get

wsud = arccosfk1sud ·k2sudg.

Then we take the least of the two anglesw or sp /2−wd. The
plot of the functionwsud for a=0.556 sslightly below the
critical valueacd is shown in Fig. 3sad. This function is piece-
wise differentiablesseveral fractures on the plot are associ-
ated with our choice ofwP f0,p /2gd. One can see that the

FIG. 3. Dependence of the anglew between
Lyapunov vectors upon the angle coordinateu:
sad at a=0.556 sslightly below the critical value
acd, «=0.6, sbd at a=0.559 sslightly above the
critical valueacd, «=0.6.

FIG. 4. Histograms of the anglew between
Lyapunov vectors:sad for a trajectory on the torus
at a=0.6, «=0.6, sbd for a trajectory on SNA at
a=0.66,«=0.6. The length of trajectory segment
is 105 iterations.
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plot of wsud approaches the axisw=0 very closely. The mini-
mum anglewinf =minuPf0,1dwsud between the Lyapunov vec-
tors decreases and becomes infinitely close to zero, as the
parametera approaches the critical valueac; see Fig. 3sbd.
Actually it remains uncertain whether the minimum angle
goes strictly to zero. However, in numerical experiments we
failed to find a lower bound for the angle distinct from zero.
Thus, we conjecture that the loss of smoothness of the de-
pendencesk1,2sud is associated with situations, when the
leading and nonleading Lyapunov vectorsk1sud and k2sud
coincide at some values of the angle variableu on the torus.
Note that, due to ergodicity of the angle variableu, coinci-
dence of the vectorsk1 and k2 at one point of the ergodic
torus implies presence of a dense set of such coincidences in
images and preimages of this point.

In order to confirm the conjecture made in the previous
paragraph, let us consider the distributions of the anglew
along typical trajectories on invariant curve for values ofa
above the critical valueac. Our interest is focused on the
lower bound of such distributions. Since, in the numerical
computations we deal with, the trajectory segments of a fi-
nite length, we will observe the minimum value of the angle
w obtained along sufficiently long segment of a typical tra-
jectory. For a trajectory segment ofM iterations starting
from the initial phaseu0 we define

wminsu0,Md = min
n=0,1,. . .,M

wsund.

Figure 4sad shows a histogram of the distribution of the
angle w along a segment of a typical trajectory of length
M =105 on the smooth torus ata=0.6. The histogram shows
that the probability density function is nonzero for small
anglesw. In Fig. 4sbd we see an analogous histogram of
anglesw for a segment of trajectory on the SNAsM =105d at
a=0.66. In both cases the anglewminsu0,Md decreases and
approaches arbitrarily close to zero as we examine longer
and longer segments of the trajectory. This result does not
depend upon our choice of the initial phaseu0. To show it, let
us consider the maximum value ofwminsu0,Md with respect
to trajectories with different initial phasesu0:

FM = max
u0Pf0,1g

wminsu0,Md.

A plot of this function obtained with an ensemble of 100
trajectories on a smooth torussat a=0.64d with randomly
chosen initial phasesu0 is presented in the Fig. 5, plot 1. One
can see that for sufficiently largeM the functionFM behaves
as

FM , Mg,

whereg.−1. Thus, our conclusion concerning zero lower
bound for the anglew is valid for all or almost all trajectories
on the smooth torus. Hence, we can neglect the dependence
of the minimum anglewmin upon the initial phaseu0: wmin
=wminsMd. Note that the same results for the minimum angle
wmin were obtained for trajectories on SNA, as seen in plot 2
of Fig. 5, ata=0.66.

The same properties of the distribution of the anglew
were observed for trajectories on smooth torus and SNA at
all tested valuesaP fac,afd. In order to illustrate this state-
ment, let us fix a lengthM of a trajectory segment and con-
sider the dependence of the minimum anglewmin upon the
parametera: wmin=wminsM ,ad. Figure 6 shows the depen-
denceswminsad for two fixed valuesM =104 sad andM =105

sbd. Comparison of these plots illustrates the effect of an
increase inM. One can observe a significantsof an order of
magnituded decrease of the minimum anglewmin asM grows
from 104 to 105.

We also note the following fact as worthy of note. For the
case of chaotic systems, interest immediately focuses on the
properties of chaotic saddlesssee Ref.f39g and works cited
thereind. The chaotic saddle is hyperbolic if all angles be-
tween the stable and unstable directionsswhich coincide
with the Lyapunov vectorsd are uniformly bounded away

FIG. 5. Plot of the functionFM for 100 trajectories with ran-
domly chosen initial angle variable on the torussplot 1, a=0.6, «
=0.6d and on the SNAsplot 2, a=0.66,«=0.6d.

FIG. 6. The effect of increase of the trajectory
segment lengthM on the minimum angle be-
tween Lyapunov vectors: dependencewminsM ,ad
versusa for sad M =104 and sbd M =105.
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from zero. Otherwise, the chaotic saddle is referred to as
nonhyperbolic. The properties of thesnondhyperbolicity of
chaotic saddles in the Hénon map were studied in Ref.f39g.
In this context, our results for the distributions of angles
between the Lyapunov vectors for trajectories on a smooth
torus and a SNA seem rather intriguing. One can com-
pare Figs. 4sad and 4sbd of the current paper with the analo-
gous Fig. 8scd of Ref. f39g and our Figs. 6sad and 6sbd with
Figs. 11sad and 11sbd of Ref. f39g. The numerical results
for the angle distributions are very similar, although we con-
sider nonchaotic trajectories on a smooth torus and a SNA,
while the authors of the workf39g deal with nonhyperbolic
chaotic saddles. Thus, we can conclude that on the route
from quasiperiodicity to chaos the angles between the
Lyapunov vectors may go to zero before the destruction of a
regular motion and onset of a chaotic dynamics. We believe
that this observation is interesting and may merit a special
study.

IV. STRUCTURE OF THE PARAMETER SPACE
OF THE QUASIPERIODICALLY FORCED HÉNON MAP

Let us now consider the configuration of regions of dif-
ferent dynamical behavior in the parameter space of the map
s2d. Figure 7 shows three fragments of thea-« parameter
plane at the fixed valueb=0.5. In order to distinguish non-
chaotic and chaotic dynamical regimes on the parameter
plane, we calculate the largest nontrivial Lyapunov exponent
s1. On the other hand, smooth tori and strange nonchaotic
attractors may be distinguisehd via calculation of the phase
sensitivity exponentd, which measures the sensitivity of a
trajectory on an attractor with respect to a variation of the
angle variableu ssee Ref.f15gd. Smooth attractorsse.g., torus

T, double torus 2T, quadruplicate torus 4T, etc.d have a nega-
tive Lyapunov exponentss1,0d without phase sensitivity
sd=0d. The symbolsT, 2T, and 4T below the planes indicate
intervals of the parametera, in which the respective smooth
tori exist at«=0. The light-gray tone corresponds to regions
of quasiperiodic dynamics characterized by the smooth de-
pendence of the Lyapunov vectors upon the angle variable on
torussthe indices1, 3, and6 correspond to the toriT, 2T, and
4T, respectivelyd. The gray tone shows the regions of tori
with nonsmooth dependence of the Lyapunov vectors upon
the angle variables2, 4, and7 correspond toT, 2T, and 4Td.
In the regions shown in white the Lyapunov vectors on tori
are not defineds5 and8 correspond to 2T and 4Td. The area
of chaotic dynamicsss1.0d is shown in black. Between the
regular and chaotic regimes, an SNA exists in the region
shown in dark-gray tone. This intermediate type of attractor
is characterized by negative Lyapunov exponentss1,0d
with high phase sensitivitysd.0d. In the area filled by pat-
tern, the maps2d has no attractor, and the trajectories escape
to infinity.

Let us consider mechanisms of dynamical transitions in
the parameter plane in some detail. In regions1 and 2 the
attractor of the systems2d is a smooth torus. In region1 this
torus is characterized by a smooth dependence of Lyapunov
vectorsk1,2sud upon the angleu, as shown in Figs. 2sbd and
2scd. In region2 the vector functionsk1,2sud become nondif-
ferentiablefsee Figs. 2sdd and 2sedg. The transition from1 to
2 is associated with the mechanism described in the previous
section.

When crossing the lineD1 on the border of the regions1
and 3, the torusT becomes unstable and bifurcates to the
double torus 2T. An example of the double torus of the map
s2d at a=0.315,«=0.3 sregion3d is shown in Fig. 8sad. Since
the double torus 2T consists of two smooth branches,

FIG. 7. Parts of the parameter plane of the
map s2d at the fixed valueb=0.5. The regions of
existence of a torusT s1,2d, double torus
2T s3,4,5d, and quadruple torus 4T s6,7,8d are
divided into subregions in accordance with
smooth, nonsmooth, or undefined dependence of
the Lyapunov vectors upon the angle variable.
The light grays1,3,6d, gray s2,4,7d, and white
s5,8d tones denote the regions of smooth, nons-
mooth, or undefined dependence, respectively.
The regions of SNA and chaos are shown in dark
gray and black, respectively. In the patterned ar-
eas the maps2d has no attractor. The curvesD1

andD2 correspond to the first and second torus-
doubling bifurcations. The curveF1 between the
regions1 and2 denotes the border of the loss of
smoothness of the vector functionsk1,2sud. sad
The general parameter plane.sbd The enlarged
fragment in the area of the second torus-doubling
bifurcation. scd The enlarged fragment near the
terminal point of the first torus-doubling bifurca-
tion curve.
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2T1:hsx,y,ud P R2 3 T1ux = xs1dsud,y = ys1dsud,u P f0,1dj,

2T2:hsx,y,ud P R2 3 T1ux = xs2dsud,y = ys2dsud,u P f0,1dj,

we need to introduce two pairs of vector functionsk i
1,2sud

si =1,2d to characterize the dependences of Lyapunov vec-
tors upon the angle variable on the double torus. Let the pair
of vector functionsk1

1,2sud=(kx1
1,2sud ,ky1

1,2sud ,0) determine the
leading and nonleading Lyapunov vectors on the branchT1,
while the pairk2

1,2sud=(kx2
1,2sud ,ky2

1,2sud ,0) be associated with
the branch 2T2. In order to numerically obtain the value of
the leading Lyapunov vectork1

1su0d at the pointsx0,y0,u0d
P2T1, we can start iterating the maps6d from the initial
angleu−n f=u0−nv smod 1dg, wheren is a sufficiently large
natural number, with an arbitrarily chosen initial vectork−n.
Note that the variablesx andy in the maps6d are functions of
the angle variableu, and in this case they must be defined as

xj = Hxs1dsu jd, j = 2m,

xs2dsu jd, j = 2m+ 1,
J

yj = Hys1dsu jd, j = 2m,

ys2dsu jd, j = 2m+ 1,
J s8d

wherem is a natural number such that 0ømøn/2. Varying
u0 within the intervalf0d, we will obtain the full dependence
k1

1sud. On the other hand, in order to find the vectork2
1su0d at

the point sx0,y0,u0dP2T2, one should iterate the maps6d
from the initial angleu−n with an arbitrarily chosen initial
vectork−n and with the following conditions forx andy:

xj = Hxs2dsu jd, j = 2m,

xs1dsu jd, j = 2m+ 1,
J

yj = Hys2dsu jd, j = 2m,

ys1dsu jd, j = 2m+ 1.
J s9d

In the same way, one can determine the nonleading
Lyapunov vectork1

2su0d or k2
2su0d. For this purpose one

should iterate the maps7d from the initial angleun f=u0

+nv smod 1dg, wheren is a sufficiently large natural num-
ber, with an arbitrarily chosen initial vectorkn, and the de-
pendencesx=xsud andy=ysud are given by formulas8d and
s9d.

The plots of the functionskx1
1 sud and kx2

1 sud at a=0.315
and «=0.3 sregion 3d are presented in Fig. 8sbd, while Fig.
8scd shows the plots ofkx1

2 sud andkx2
2 sud. One can see that

all these functions are smooth. Hence, the Lyapunov vectors
smoothly depend upon the angleu on the double torus at the
respective parameter values. On the other hand, in region4
the double torus is characterized by the nonsmooth depen-
dence of Lyapunov vectors upon the angle variable. An ex-
ample of the double torus of the maps2d at a=0.33 and«
=0.3 sregion 4d is presented in Fig. 8sdd. Figures 8sed and
8sfd show the plots of the nonsmooth functionskx1

1 sud and
kx1

2 sud at the same parameter values. In region5 a vicinity of
the double torus is of a focal type: therefore, Lyapunov vec-
tors are not defined. In this situation the attractors of the
mapss6d and s7d represent three-frequency tori.

The line D2 on the border of regions3 and 6 fsee the
enlarged fragment of the parameter plane in the Fig. 7sbdg
corresponds to the second doubling bifurcation, in which the
double torus 2T bifurcates to the quadruplicate torus 4T. The
latter is characterized by four pairs of vector functions
k i

1,2sud si =1, . . . ,4d, which give the dependences of the
Lyapunov vectors upon the angle variableu on each of the
four branches 4Ti si =1, . . . ,4d of the quadruplicate torus 4T.
The regions corresponding to smoothness and nonsmooth-
ness of the vector functionsk i

1,2sud si =1, . . . ,4d are denoted

FIG. 8. sad Attracting double
torus of the maps2d at a=0.315,
«=0.3 sdigits 1 and 2 are related
to the branches 2T1 and 2T2d. sbd
The plots of the functionskx1

1 sud
andkx2

1 sud at a=0.315,«=0.3. scd
Plots of the functionskx1

2 sud and
kx2

2 sud at a=0.315,«=0.3. sdd At-
tracting double torus of the map
s2d at a=0.33, «=0.3. sed Plot of
the function kx1

1 sud at a=0.33, «
=0.3. sfd Plot of the function
kx1

2 sud at a=0.33,«=0.3.
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as6 and7, respectively. In region8 the Lyapunov vectors are
undefined. This corresponds to the focal structure of a vicin-
ity of the quadruplicate torus 4T.

Based on Fig. 7, one can make the following important
observation: the torus-doubling bifurcations occurs on pas-
sage between the regions characterized by smooth depen-
dence of the Lyapunov vectors on the torus upon the angle
variable: 1→3, 3→6. Indeed, the smooth dependence of
Lyapunov vectors upon the angle variable on the “parent”
torus is necessary for the doubling bifurcation could take
place, and the “newly born” torus is also characterized by
smooth vector functionski

1,2sud. Figure 7scd shows the en-
larged fragment of the parameter plane in the region where
the termination of the torus-doubling lineD1 occurs. In order
to understand the mechanism of this phenomenon, note that
the line F1 corresponding to the loss of smoothness of the
vector functions k1,2sud intersects with the lineD1 at
sac

s1d ,«c
s1dd.s0.554 78,0.528 46d. If the parameter« is fixed

at «,«c
s1d and the parametera is varied, one can observe a

transition between the regions1→3. For the case«.«c
s1d

such transition becomes impossible due to the loss of
smoothness of the vector-functionk1,2sud. Note that a vicin-
ity of the torus-doubling terminal point contains parameter
values related to the regions of different dynamical behavior:
quasiperiodicitys1, 2, 3, 4d, SNA, and chaos.

The line of the second torus-doubling bifurcationD2 ter-
minates atsac

s2d ,«c
s2dd.s0.873 64,0.074 71d. Although we did

not study this phenomenon in detail, we found that it is also
associated with the loss of the smoothness of the depen-
dences of Lyapunov vectors upon the angle variable. For«

,«c
s2d the double torus 2T may undergo bifurcation to the

quadruple torus 4T under variation of the control parameter
a. For «.«c

s2d such a bifurcation appears to be prevented by
the loss of smoothness of the vector functionsk i

1,2sud
si =1,2d.

On the other hand, one can see that the transitions from
quasiperiodicity to SNA occur on coming out of the regions
of quasiperiodic regimes characterized by nonsmooth vector
functions k i

1,2sud: 2→SNA, 4→SNA, and7→SNA. Note
that a specific mechanism of the birth of an SNA depends
upon the choice of the parameter values. For the case of the
transition2→SNA, this mechanism may consist in a gradual
fractalization of the torusf25,30g or an intermittencyf32,33g.
For the the case of the transitions4s7d→SNA, a collision of
the attracting doublesquadrupled torus with a parent saddle
torus sHeagy and Hammel mechanismf24,30gd may occur
besides torus fractalization and intermittency. All of these
mechanisms have irregular, phase-dependent character.

Thus, the appearance of a nonsmooth dependence of the
Lyapunov vectors upon the angle variable on the torus al-
ways precedes the destruction of a regular quasiperiodic mo-
tion and the onset of a strange nonchaotic attractor via phase-
dependent mechanisms. On the contrary, regular torus-
doubling bifurcations require the existence of a smooth
vector-functionsk i

1,2sud. In this sense we can claim that cal-
culations of the Lyapunov vectors make it possible to predict
regularity or irregularity of further torus bifurcations.

V. ANALYSIS OF RATIONAL APPROXIMATIONS

Another way to explain the mechanism of termination of
the torus-doubling bifurcation line is provided by the method
of rational approximation, which is widely used for analysis
of Hamiltonian and dissipative systems. In application to the
quasiperiodically forced systems the idea of the method con-
sists in the followingssee Refs.f5–7,15gd. The irrational pa-
rameter of frequencyv in the maps2d can be approximated
by a sequence rational valuesvk, such thatv=limk→` vk.
For the case of the golden mean, the sequence of approxi-
mantshvkjk=0,1,. . .,̀ is given by the ratios of Fibonacci num-
bers:vk=Fk−1/Fk, whereFk+1=Fk+Fk−1 with F0=0 andF1
=1. For a definite level of approximationk, we consider an
ensemble of maps

xn+1 = a − xn
2 + yn + « cos 2pun,

yn+1 = bxn,

un+1 = un + vk smod 1d, s10d

which are forced periodically with the same rational fre-
quencyvk and with different values of the initial angleu0.
The attractor of the maps10d depends upon the initial angle
u0. Changingu0 continuously in the whole intervalf0,1/Fkg,
we obtain thekth approximation of the attractor of the map
s2d as a union of all occurring attractors of the maps10d. We
suppose that the properties of the original systems2d can be
obtained in the quasiperiodic limit atk→`.

An approximating set of orderk for an attracting torus
represents a smooth set of stable periodic orbits of periodFk.
Note that the approximating orbits may be of two types:
node and focus. Let us consider a periodic orbit of the map
s10d that starts from the initial angle u0:
sx0,y0,u0d ,sx1,y1,u1d , . . . ,sxFk−1,yFk−1,uFk−1d. The mono-
dromy matrix of the periodic orbit is

ĴsFkdsx0,y0,u0d = ĴsxFk−1,yFk−1,uFk−1d

3ĴsxFk−2,yFk−2,uFk−2d ¯ Ĵsx0,y0,u0d.

s11d

Since the given orbit belongs to a smooth approximating set,
the variablesx and y in Eq. s11d are functions of the angle
variableu fx0=xsu0d, y0=ysu0d, etc.g, and we can write sim-

ply ĴsFkdsu0d. The type of the periodic orbit is determined by
the values of the multipliersm1,2

Fk , which represent the non-

trivial eigenvalues of the matrixĴsFkdsu0d. The multipliers
depend upon the initial angle of the orbitu0: m1,2

Fk =m1,2
Fk su0d.

If the multipliers are real, the orbit is of a nodal type; other-
wise, it is a focus. The Lyapunov exponents of the orbit are
defined as

s1,2
Fk su0d = s1/Fkdlnum1,2

Fk su0du.

Note that the values ofs1,2
Fk may be interpreted as approxi-

mants of localsfinite-timed Lyapunov exponents overFk it-
erations of the quasiperiodically forced Hénon map.
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In the same way, approximants of the leading and non-
leading Lyapunov vectorskFk

1,2su0d can be defined as eigen-

vectors of the matrixĴsFkdsu0d,

ĴsFkdsu0dkFk

1,2su0d = m1,2
Fk su0dkFk

1,2su0d,

and they depend upon the initial angleu0. Let us analyze the
structure of the approximating set of periodic orbits, corre-
sponding to different values of the initial angleu0. In the
quasiperiodic limitsk→`d we find the following three cases
to be possible.

sC1d As the value ofu0 is varied, one can observe a tran-
sition of the multipliers m1,2

Fk su0d from real to complex-
conjugate values. Thus, the approximating set includes peri-
odic orbits of two types: nodal and focal. Such “mixed”
structure of the approximating set of orbits persists as the
order of approximationk is increased.

sC2d The multipliers m1,2
Fk su0d are real for all u0 from

the intervalf0,1/Fkd. Thus, the approximating set consists
of periodic orbits of nodal type. However, for some values
of u0 the conditionum1

Fkuù um2
Fku holds, while for other values

of u0 the opposite is valid:um2
Fku. um1

Fku. In other words, this
set has nonhomogeneous structure in the sense that the lead-
ing Lyapunov vector may transform into the nonleading one
and back, as the value ofu0 is varied. Such “nonuniform”
structure of the approximating set of orbits persists as the
orderk of the approximation is increased.

sC3d The approximating set for the smooth torus consists
of periodic orbits of the same typesnodald. The set has uni-
form structure in the sense of absence of the exchange of the
leading and nonleading Lyapunov vectors.

In casessC1d andsC2d the structure of the approximating
set can be referred to as “phase dependent.” In the quasip-
eriodic limit, the phase-dependent approximating set forms a
torus which is characterized by a nonsmooth dependence of
the Lyapunov vectorsk1,2sud upon the angle variableu. On
the other hand, casesC3d corresponds to a situation when the
dependenciesk1,2sud are smooth.

Before a study of the structure of approximating set, note
that the one-time-iterated maps10d has negative Jacobi de-
terminantsJ=−bd. The superposition ofFk mapss10d will
possess the JacobianJ=s−bdFk. Hence, we need to consider
separately rational approximantsvk=Fk−1/Fk with odd and

even periodsFk. Indeed, the matrixĴsFkdsu0d has the form

ĴsFkdsu0d = 3J11su0d J12su0d J13su0d
J21su0d J22su0d J23su0d

0 0 1
4 .

The nontrivial multipliers of the periodic orbitm1,2
Fk su0d are

defined as

m1,2
Fk su0d = Ssu0d/2 ± ÎfSsu0d/2g2 − s− bdFk,

whereSsu0d=J11su0d+J22su0d. Since we have originally cho-
senb.0, the multipliers are always real for the case of odd
values ofFk. Hence, all the approximating orbits of odd pe-
riod are nodal. On the other hand, for evenFk, values of the
angleu0 can exist such that the condition

sSsu0d/2d2 , bFk s12d

holds. For this case, the approximating set can possess orbits
of both nodal and focal type.

As an example, let us consider the systems2d at the pa-
rameter valuesa=0.34,«=0.6, andb=0.5, which correspond
to the case of existence of the nonsmooth dependences
k1,2sud. In order to illustrate the existence of phase-
dependent structure of the approximating set of periodic or-
bits, we have computed the nontrivial Lyapunov exponents
s1,2

Fk =s1/Fkdlnum1,2
Fk u as functions of the initial angle variable

u0 within the intervalf0,1/Fkd. Figure 9sad shows plots of
the functionss1,2

Fk su0d for the odd period of approximation:
Fk=55. The exponents1

Fk corresponds to the negative multi-
plier sm1

Fk,0d, while the exponents2
Fk s=lnubu−s1

Fkd corre-
sponds to the positive multipliersm2

Fk.0d. One can see that
the intervalf0,1/Fkd turns out to be subdivided into three
segments:A, B, andC. Within the subintervalsA andC the
condition −̀ ,s2

Fk, s1/2dlnubu,s1
Fk,0 holds srespec-

tively, 0,m2
Fk,bFk/2,−m1

Fk,1d. Thus, the approximating
Lyapunov vectorkFk

1 is leading within these subintervals, and
the exponents1

Fk is the largest of finite-time Lyapunov expo-
nents. In the subintervalB the backward condition −̀
,s1

Fk, s1/2dlnubu,s2
Fk,0 holds srespectively, 0,m1

Fk

,bFk/2,−m2
Fk,1d. Hence, the approximating Lyapunov

vectorkFk

2 appears to be leading in the subintervalB, and the
exponents2

Fk becomes the largest.4 On the border of the in-
tervals there are two of such pointsu1,2

* , wherem2
Fksu1,2

* d=
−m1

Fksu1,2
* d=bFk/2. We have tested rational approximants with

large odd periodsFk up toFk=4181 and found that the struc-
ture of the intervalf0,1/Fkd remains qualitatively the same
as the levelk of rational approximant increases. However,
the quantitative features of the interval structure may change
with k. Let us denote the relative lengths of the subintervals
A, B, and C as pA, pB, and pC, respectivelysnote that the
sum length of all subintervals is normalized to unity:pA
+pB+pC=1d. Figure 9sbd shows the dependence of the rela-
tive length pA+C s=pA +pCd upon k. One can see that the
dependence has irregular character. Note that none of the two
componentsspA+C and pBd decays to zero as the levelk in-
creases.

Figure 9scd shows the dependences of the Lyapunov ex-
ponentss1,2

Fk upon the initial angleu0 for the approximating
set of periodic orbits in the case of even periodFk=34. In
this figure the intervalf0,1/Fkd is divided into five subinter-
vals. Within the subintervalsA, C, andE the values of mul-
tipliers m1,2

Fk are real. Hence, the corresponding stable peri-
odic orbits are of nodal type. On the other hand, within
subintervalsB andD the conditions12d holds. The periodic
orbits within subintervalsB and D are characterized by

4Note that the values ofs1,2
Fk are negative over all the intervalsA,

B, and C, and the approximating set consists of stable periodic
orbits only. Sinces1,2

Fk may be interpreted as approximants of finite-
time sover Fk iterationsd Lyapunov exponents, we see that the ap-
pearance of a nonsmooth dependence of the Lyapunov vectors upon
the angle variable does not result in the appearance of a local insta-
bility.
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complex-conjugate multipliersfm1
Fk=sm2

Fkd* g. The transition
from regionA to regionB implies a change of the nodal type
of orbit to the focal type. Analyzing the structure of the in-
terval f0,1/Fkd under increase ofk, we found that it remains
qualitatively the same for large, evenFk. However, the quan-
titative features change withk. The sum length of the inter-
vals of nodal orbitspA+C+E s=pA +pC+pEd dominates over
the sum length of the intervals of focal orbitspB+D
s=pB+pDd. In Fig. 9sdd we have plotted the sum lengthpB+D
sdouble-logarithmic scaled versus the periodFk slogarithmic
scaled. Since the conditions12d is applicable to both even
and odd approximations, we consider both even and odd pe-
riodsFk in order to obtain a representative plot. One can see
that the points on the plot can be fitted by a straight line for
sufficiently largeFk. Hence, the relative lengthpB+D decays
as exponent of the periodFk of approximation.5

If the approximating sets of some torus possess phase-
dependent nonuniformity of the described type and this non-
uniformity persists in the quasiperiodic limit, the correspond-
ing torus cannot undergo a doubling bifurcation. Indeed, let
us consider the mechanism of the doubling bifurcation of a
torus from the viewpoint of bifurcations of the approximat-
ing periodic orbits. For the case of an approximation with

odd periodFk, each periodic orbit of the set undergoes dou-
bling bifurcation along the leading Lyapunov direction,
which is associated with the negative multiplierm2. How-
ever, the Lyapunov vectork1 appears to be leading only
within segmentsA and C of the interval f0,1/Fkd, as we
have shown above. Within the segmentB the condition holds
−bFk/2,m2

Fk,0. Hence, the periodic orbits within the seg-
mentB cannot undergo a doubling bifurcation. For the case
of an approximation with even periodFk, there are two sub-
intervalssB andDd, in which the periodic orbits are charac-
terized by complex-conjugate multipliers. Obviously, the re-
spective periodic orbits cannot undergo doubling bifurcation.

Note that the phase-dependent nonuniformity in the struc-
ture of the approximating set makes other regular torus bi-
furcationsssymmetry breaking, saddle-noded impossible, be-
sides the torus-doubling bifurcation. Indeed, regular torus
bifurcation occurs when all orbits corresponding to different
initial anglesu0 on a torus bifurcate in a similar way. The last
requirement is obviously impossible for the case of the
phase-dependent nonuniform structure of the approximating
set described above. Hence, the given torus can undergo evo-
lution and destruction according to phase-dependent mecha-
nisms only. In other words, under a variation of the param-
eters of the maps2d such a torus disappears with the onset of
a strange nonchaotic attractor or of the divergence of trajec-
tories. This conclusion is confirmed by the numerical obser-
vations made in Sec. IV on the structure of the parameter
space of the quasiperiodically forced Hénon map.

VI. CONCLUSION

In the present paper we have observed a transition which
consists of the appearance of a nonsmooth dependence of the

5This result correlates with an analogous exponent law obtained
for the rational approximations of the phase-dependent saddle-node
bifurcation in the quasiperiodically forced circle mapsRef. f41gd.
We suppose this coincidence to be not fortuitous and to indicate a
close relationship between the maps in Lyapunov spaces6d ands7d
and the quasiperiodically forced circle maps. This problem merits a
special study.

FIG. 9. sad Plots of the functionss1su0d sthick
curved and s2su0d sthin curved for Fk=55 at a
=0.34,«=0.6. sbd Dependence of the sum length
pA+C upon the periodFk slogarithmic scaled of
approximation.scd Plots of the functionss1su0d
sthick curved ands2su0d sthin curved for Fk=34 at
a=0.34, «=0.6. sdd Dependence of the sum
length pB+D sdouble logarithmic scaled upon the
periodFk slogarithmic scaled of approximation.
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Lyapunov vectors upon the angle variable on torus in the
quasiperiodically forced Hénon map. Although the attractor
of the system typically remains a smooth torus after such
transition, this torus cannot undergo regular doubling bifur-
cations. We have shown that this transition terminates the
line of torus-doubling bifurcation on the parameter plane of
the model map and restricts the number of torus-doubling
bifurcations on the route to chaos. The presence of a smooth
or nonsmooth dependence of the Lyapunov vectors upon the
angle variable on the torus determines whether torus bifur-
cations under variation of the parameters of the system will
be regular or irregular. The transition always precedes the
destruction of quasiperiodic motion and the birth of a strange
nonchaotic attractor via irregularsphase-dependentd mecha-
nisms.

We believe that the arguments of this paper concerning
the mechanism of torus-doubling bifurcation can also be ap-
plied to other regular torus bifurcations—namely, symmetry
breaking, transcritical, and saddle-node bifurcations. One can
show that the existence of a smooth dependence of the
Lyapunov vectors upon the angle variable on a torus is a
necessary condition for the possibility of these regular torus
bifurcations. Therefore, we suppose that the new phenom-
enon, which consists in the appearance of a nonsmooth de-
pendence of the Lyapunov vectors upon the angle variable on

the torus, plays a key role in different scenarios for the tran-
sition from regular motion to chaos in quasiperiodically
forced systems.

Of course, in a real physical system some noise is inevi-
table. The question arises whether calculations of the
Lyapunov vectors are reliable in real systems. To answer it,
one can consider maps in the Lyapunov spaces6d and s7d
with an additional conditionxn=xsund+gjn, where jn is a
noise variable andg is a noise amplitude parameter. Accord-
ing to the results off40g, an SNA in a quasiperiodically
forced systems is robust with respect to addition of a small
noise signal. Hence, the dynamical regimes in the Lyapunov
maps would not change due to a small noise. Therefore, we
expect our analysis to be valid in real oscillatory systems
under external quasiperiodic forcing in the presence of noise.
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