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Smooth and nonsmooth dependence of Lyapunov vectors upon the angle variable on a torus
in the context of torus-doubling transitions in the quasiperiodically forced Hénon map
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A transition from a smooth torus to a chaotic attractor in quasiperiodically forced dissipative systems may
occur after a finite number of torus-doubling bifurcations. In this paper we investigate the underlying bifurca-
tional mechanism, which is responsible for the termination of the torus-doubling cascades on the routes to
chaos in invertible maps under external quasiperiodic forcing. We consider the structure in the vicinity of a
smooth attracting invariant cur{erus in the quasiperiodically forced Hénon map and characterize it in terms
of Lyapunov vectors, which determine the directions of contraction for an element of phase space in a vicinity
of the torus. When the dependence of the Lyapunov vectors upon the angle variable on the torus is smooth,
regular torus-doubling bifurcation takes place. On the other hand, we observe a transition consisting of the
appearance of a nonsmooth dependence of the Lyapunov vectors upon the angle variable on the torus. We show
that torus doubling becomes impossible after this transition has occurred, although the attractor of the system
still remains a smooth torus. We illustrate how the transition terminates the torus-doubling bifurcation line in
the parameter space with the torus transforming directly into a strange nonchaotic attractor. We argue that the
transition plays a key role in mechanisms of the onset of chaos in quasiperiodically forced invertible dynamical
systems.
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I. INTRODUCTION Therefore, much attention is focused on numer[@a-33
The investigation of transition mechanisms from quasi and experimentdi34,39 studies of dynamical transitions in
9 q P eriod-doubling systems under the effect of an external qua-

eriodic dynamics to chaos is one of the central topics i.rgiperiodic force. When the amplitude of the external quasip-

contemporary nonlinear science. Starting with the classiyjqic force is fixed and the nonlinearity parameters of the

workshof Lr?ndau[lg andk Ruille an% Lakercgg], many re—l model system are varied, a sequence of torus-doubling bifur-
searchers have undertaken theorefi8ab] and experimental 4ijons can occur. Such a sequence is typically terminated by

[10-13 studies of this problem. As is well known, the image the onset of an SNA, followed by a further transition to

O.f regular quaS|_per|od|c motion in the phase space of a d'_séhaos. The number of torus-doubling bifurcations in the se-
sipative dynamical system is a smooth attracting ergodi

0 . ! . hani for th uence depends upon the amplitude of the external quasip-
;[jorus. ne cofnvenlent \(/j\{ay to investigate mgc anisms o_r;cj_ riodic force. For the case of sufficiently large amplitudes, a
estruction of an ergodic torus Is to consider quasiperioc I'simple smooth torus may transform into an SNA. For small
cally forced systems: in such systems the frequency ratio

) . ﬁmplitude values, several torus-doubling bifurcations may
appear as independent parameters and can be effectively CQ%cur before the SNA arises. The number of torus-doubling

trolled in both numerics and in experiments. Quasiperiodiy,i¢cations grows as the amplitude of the quasiperiodic

cally forced systems have become popular models for studigg o is decreased. However, this number appears to be finite
of the transition from quasiperiodicity to chaos after the dIS-for any fixed nonzero amplitudéSee numerical results pre-

covery of a strange nonchaotic attradt8NA) by Grebogiet — gonie in Ref[24]) An infinite bifurcation sequence can

al. in 1984[14]' An SNA typically appears in the intermedi'— occur only for the case of the driving force amplitude equal

. "&ero, as follows from the analysis developed in R28].
of features of regular and chaotic attractors. Attractors of th|s|-hus an important issue is to understand the reason for the

type are nonchaotic in the sense that only NONPOSItVGe ination the torus-doubling cascades in the quasiperiodi-
Lyapunov exponents occur, but they possess a fractal—llk@a"y forced systems

geometrical structure, which justifies the term “strangEdr For noninvertible unimodal maps the mechanism of the

more details on the structure and properties of SNA, S€y mination of torus-doubling cascades appears to be closely

Refs.[15-22,) associated with the critical behavior studied by Kuznetsbv

One of the important observations, made in the 1980s b)él [26]. The line of torus-doubling bi L
) ) . . . - g bifurcation in the param-
Anishchenkeet al.[8] and Kanekd?9], is that the destruction o0 shace of the quasiperiodically forced logistic map termi-

of a smooth tqrgs and the appearance of c.:haos.may be PRates at a special critical point, called the torus-doubling ter-
ceded by a finite number of torus-doubling bifurcations. -, (TDT). (The corresponding values of the quasiperiodic
force amplitude and the nonlinearity parameter will hereafter

be referred to as the critical parameter valug$e termina-
*Electronic address: chaos777@rol.ru tion of the bifurcation line is associated with the tangency of
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the attractor with the line of zero derivative of the map. Thisvariation of the parameters of the system is associated with
event changes the character of the bifurcation, which bethe appearance of an SNA via phase-dependent mechanisms
comes phase dependent and the attractor of the system b@uch as torus fractalizatig@5,30], intermittency{32,33, or
comes nonsmooth. For amplitudes of the quasiperiodic forcehe Heagy and Hammel scenaiia4,30) or of a chaotic
above the critical value the sign of the derivative dependsransient. We argue that an analogous mechanism may be
upon the angle variable on the torus; therefore, regular torusesponsible for the prevention of doubling bifurcations for
doubling bifurcation becomes impossible. Numerical analyoypled, quadrupled, and other tori of the model system.

sis shows that for small amplitudes of the quasiperiodic force The paper is organized as follows. In Sec. Il we define
a similar mechanism terminates the lines of doubling bifur- y45,n0y vectors for quasiperiodic trajectories on a torus
cations for doubled, quadrupled, and other tori of this systemy, 4 ;se them for a description of the mechanism of torus-
[36]. Thus we can conclude that nonln_vertlblllty plays thedoubling bifurcation. In Sec. Ill we present numerical data
role of a “terminator” for the torus-doubling cascades on the nd  discuss smO(.)th anci nonsmooth dependences of

route to chaos in the quasiperiodically forced logistic map a yapunov vectors upon the angle variable for different pa-

well as for other noninvertible 1D maps of the same univer-
sality class. rameter values of the model system. In Sec. IV we analyze

It appears that the structure of the parameter space gdynamical transitions, which include doubling of tori, in the
scribed above occurs in different period-doubling system&arameter space of the model system. In Sec. V we explain
under external quasiperiodic forcing. For example, analoin® mechanism which prevents the torus-doubling bifurca-
gous transitions were observed in numerical experiments ofion from the viewpoint of the method of rational approxi-

a nonlinear dissipative oscillator under external two-Mation[15]. In the Conclusion we discuss the role of the
frequency driving with irrational frequency ratf@7]. The  New phenomenon associated with the appearance of nons-
Poincaré map in the phase space of such an oscillator is 00th dependences of the Lyapunov vectors upon the angle
smooth invertible three-dimension@D) map with one qua- Variable on the torus in a general picture of transitions from
siperiodic variable. The most widely known example of suchduasiperiodicity to chaos, which involve different bifurca-

a kind is a quasiperiodically forced Hénon migp,31. A  tions of tori.

smooth closed invariant curvgorug in the phase space of

this map corresponds to the Poincaré section of the torus in

the phase space of a biharmonically forced oscillator. Note !l CHARACTERIZATION OF THE TORUS VICINITY:

that a reduction of the invertible 2D Hénon map in the limit LYAPUNOV VECTORS AND INVARIANT 2D

of strong dissipation produces a noninvertible 1D logistic MANIFOLDS

map. On th.e other hand, for dynamigal systems determined | ot s start with an autonomous Hénon map

by differential equations or for invertible maps, the mecha-

nism of termination of the torus-doubling cascades obviously X1 =a-— xﬁ + VYo,
must be different from the above-mentioned loss of invert-
ibility, which works only for noninvertible forced 1D maps. Vo1 = bX,, (1)

In order to understand the underlying mechanism of the ) _ )
termination of the torus-doubling cascades in invertible sysWhere 0<b<1. Let(xo,Yo) be a fixed point of this map. The
tems, we consider in this paper the Hénon map driven by afmultipliers of the fixed point are defined ag,,
external quasiperiodic force with an irrational frequency pa=(StVS-4J)/2, whereJ=-b is the determinant of the Ja-
rameter, chosen to be the inverse golden mean. Since ti®bi matrix of the mag1) and S=-2x, is the trace of this
torus-doubling bifurcation is local, we focus our attention onmatrix at the fixed pointx,,yo). Due to our choice ob, the
a study of the vicinity of a smooth attracting invariant curve condition S2-~4J>0 holds. The last condition implies that
(torus in this system. Such a vicinity can be characterized inthe fixed point possesses two different real multipliers
terms of Lyapunov vectors, which determine the directionsus »(u11.=-b), and, hence, the point is either a saddle or a
of contraction for an element of phase volume around thestable node. For definiteness, let us suppose|that> |,|.
attracting torus. The values of the Lyapunov vectors depend In the case of the saddle poiffjus|>1, |u, <1), there
upon the angle variable on the torus. If the dependence of thare two invariant 1D manifoldgstable and unstable ones
Lyapunov vectors upon the angle variable is smooth, a toruswvhich are represented by smooth invariant curves in the
doubling bifurcation is possible. Alternatively, we observe aphase plan¢see Fig. 1a)]. The two eigenvectork!? of the
new transition, associated with the onset of a nonsmootldacobian matriXLyapunov vectorsgive the directions tan-
dependence of the Lyapunov vectors upon the angle variablgent to the invariant manifolds at the fixed point.
on the torus. It is important to note that in a typical case the When |u, /<1, the fixed point is a stable node. In this
attractor of the system remains a smooth torus after such @ase also we can define two Lyapunov vectors, which deter-
transition. We show that the latter transition makes a regulamine the directions of contraction for an element of phase
torus-doubling bifurcation impossible and terminates the linespace in a vicinity of the nodal fixed point. THeading
of this bifurcation in the parameter space. We also argue thatectork?, associated with the multiplier of largest modulus,
other regularphase-independentorus bifurcations such as is tangent to the set of stable invariant manifolds, as shown
symmetry breaking or inverse saddle-node bifurcation bein Fig. 1(b). (See also Ref(38].) The vectork?, referred to
come impossible after the new transition has occurredas thenonleadingeigenvector, is tangent to the single “non-
Therefore, further evolution of the attracting torus underleading” stable invariant manifold.
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(@ (b)

FIG. 1. Schematic drawings of
the fixed points, tori, and associ-
ated invariant manifolds. (a)
Saddle fixed point of the mafd).
(b) Nodal fixed point of the map
(1). (c) Saddle torus of the map
(2). (d) Nodal torus of the map
(2). (e) Parent saddle toru$ and
the newly-born double torusT2
The detailed explanations are pro-
vided in Sec. Il of the paper.

Single "Nonleading” Manifold

Now we modify the mag1) by adding an external qua- variabled [see Fig. 1d)]. The leading vectok? is tangent to

siperiodic force and consider the model magRifix T1: a continuum of stable 2D manifoldsve arbitrarily choose
) one of them and refer it to ad?), while the vectork? is
Xns1= @7 Xy + Y+ & COS 26, tangent to one special nonleading stable maniféfl The
remainder of this article is concerned with the stable nodal
Yne1 = DX, torus and its vicinity:
Now let e # 0. For typical values of andb apart from
O+1=60,+ @ (Mmod 1, (2)  the bifurcation points of the maf®?), a small quasiperiodic

perturbation will not destroy the torus and the smooth 2D
manifolds. Thus, for small nonzeeothe map(2) possesses a
nontrivial torus

wherew is an irrational number, which we set equal to the
inverse golden meano=(y5-1)/2. Fore=0 map(2) has a
trivial invariant curve(torus

TO;{(x,y, 0) e R2 X T1|x:x0,y:y0,0 e [0,1)}. T:{(vav ‘9) € R2 X T1|X: X(9),y: y(9),9 € [O,l)}; (3)

Obviously, in this case a structure of a vicinity of the torusthe stable 2D manifold$\*2 in a vicinity of the torusT
T, will be determined by multipliers of the fixed point become distorted, but remain smooth 2D surfaces. The
(X0, Yo)- Lyapunov vectors, which are tangent to the manifolds and
If |uq)>1 and|uy <1, the torusT, is of a saddle type, orthogonal to the) axis, now depend on the angle variable
and there are two invariant manifolds, unstable and stabl&*>=k*%(§). While the manifolds are smooth, the vector
which we denote a8 and W, respectively. The manifolds ~ functions k*6)=(k}%(6),k;'%(6),0) remain differentiable.
are represented by smooth 2D surfaces in the 3D phasks the parametes increasegother parameters of the map
space, as shown in Fig(d. At any point of the saddle torus (2) we suppose to be fixg¢dthe plots of the functionk){;yz(e)
one can define two directions, which are tangent to the inmay become more and more distorted, until these functions
variant manifolds and orthogonal to the axis of the anglelose differentiability at some critical value ef The appear-
variable 6. For e=0 these directions are given simply by ance of nonsmooth dependences of the Lyapunov vectors
the Lyapunov vector&!? of the fixed point(xy,Yy,) of the

map (1). BT
P !Note that, besides stable nodes and saddles, a dissipative map

Likewise, if |u; J <1, the torusT, is of a stable nodal ' . " )
type, and, again, at any point of a stable nodal torus one Carrr]lay possess a fixed point of focal type, which is characterized by

. . - . ._complex conjugate multiplier(mlz,u;). In this case the addition of
Qeflne two Lyapunov vectors, which determine tV\.’O (_j|r_ep the quasiperiodic variablé gives a smooth torus that has a vicinity
tions of contraction for an element of phase space in vicinit

f th h f L h di ion is ch Yof focal type. The Lyapunov vectors are not defined in the focus.
of the torus. The rate of contraction in each direction is ¢ arTherefore, the 2D invariant manifolds turn around the stable torus

acterized by the respective Lyapunov exponelt , of focal type. In fact, the one time iterated Hénon ni&pdoes not

=In|uy o). If we introduce 2D stable invariant manifolds as- possess focal fixed points bt-0. However, it has stable periodic
sociated with the nodal toryas extensions of the 1D invari- orbits of periods 2, n=2, which are characterized by complex

ant manifolds of the nodal fixed point of the méb], then  values ofy, ,. Further we will observe some quasiperiodic regimes
the two Lyapunov vectork®? will define two directions tan-  arising from focal periodic orbits, although they do not play a sig-
gent to the manifolds and orthogonal to the axis of anglenificant role in the present work.
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k%2 upon the angle variablé apparently provides evidence the subsequences .Y . b ), --- (Xe, . YF,. O ), Where Fy

for the destruction of the smooth 2D manifolds in a vicinity =1,2,3,5,8,13,... are thEibonacci numbers. Under the

of the torusT. assumption of smoothnesslkof?(6), the sequence of vectors
Let us discuss the role of Lyapunov vectors and 2D in-k. ... k: also converges to the vectdr, at the initial

Variant manifolds in the meChanism Of the tOt’US-dOUangpo?nt_ Henkce’ we come to a Conc|usion that

bifurcation in the mag2). On the threshold of bifurcation,

the map possesses a nodal tofiushown in Fig. 1d). As a ke :j(Fk)k0—> ur ko as k— o, (5)

control parameter of the system passes through the bifurca- : X

tion value, the nodal torus loses stability and becomes of a where up, is a coefficient. Thus, we obtain an eigenvalue

saddle type. The loss of stability of the torlioccurs along  problem for the matrix

the less stable leading directidt(6), as the corresponding

Lyapunov exponentr; passes through zero. A pair of smooth R Ju Jiz Jis
curves I (“double torus) appears in a vicinity of Z; a I =351 Jpp Jp|.
trajectory on the double torus visits two curves alternately. 0O 0 1

The leading manifold\* of the parent nodal toru$ trans- .

forms after bifurcation into the unstable manifal of the ~ One of the eigenvectors of the matd¥€¥ corresponds to a
saddle torusT. The newly born double torusT2belongs to trivial unit eigenvalue associated with the angle variable. The
the smooth manifol\, as shown in Fig. (e). Note that the  other two eigenvectors have the fomrrn}:'f:(mi’z,mi'z,O),
vector functionk’(6) determines the direction tangentW'.  orthogonal to the axis of the angle variable. Hence, at the
Hence, immediately after the bifurcation the vector functionpoint (x,,yq,6), one can define two Lyapunov vectors
k*(6) determines in linear approximation the direction fromk®.%(g,) as the limits for eigenvectons? at k— oo. Analo-

the saddle torud to the nEW|y born double torusl2 Since gous arguments can be deve'oped foF any pO(mylg) of
all the tori (T and 2T) are smooth and they belong to the the torus(3). Note that relatior(5) makes it possible to de-

smooth manifoldW, the dependencé’(6) will be also  termine two nontrivial Lyapunov exponents for a quasiperi-
smooth. On the other hand, the nonsmooth dependence ghic trajectory on the torus as

k(6) upon @ would imply that a newly born objedtorn

instead of ) must also be nonsmooth as it belongs to a O12= Iim(lle)|n|/"“éL2|-

nonsmooth manifold\. Thus, existence a smooth vector ko

function k*(6)=(ky(6),k;(6),0) appears to be a necessary In the limit k—c the values ofo; , do not depend on the

condition for a possibility of the regular torus-doubling bi- initial phase#, and characterize the entire torus, since the

furcation. The loss of smoothness of the dependésice) quasiperiodic trajectory fills the torus densely due to ergod-

provides us with evidence that torus-doubling bifurcation bedcity of the quasiperiodic motion.

comes impossible. Let us consider now the methods for nu- In practice, the method of definition of the Lyapunov vec-

merical computation of the dependend&<(6) and for the tors described above is inconvenient for numerical computa-

analysis of their smoothness. tions. Moreover, the method was based on an assumption of
First, let us turn to a case when the functidds¥(9) are differentiability of k>4 6). On the other hand, we should take

smooth. Let there be a poifity, Yo, 6), Which belongs to the into account that such dependences can be either differen-

torus(3). In order to define the Lyapunov vectd$?(6,) at Fiable or r)o.rjdifferentiable. Neve.rtheless, due to the possibil-

this point, we iterate mag2) starting from(xy,yo,6,) and Ity of definition of k? as the eigenvectors of an operator

obtain an orbit(Xe, Yo, fo), (X4,Y1, 61) ... (X,,Vn. 6). Let a  [5ee EQ.(5)], we can suggest another simple way for their

vectork, be collinear to the vectdc(6y) [or k2(6y)] at the ~ determination. _

initial point. After one iteration of mag2), this vector will Let us suppose that the vector functiok$(6) cor-

be mapped into the vecté?, which is collinear to the vector €sPonding to the leading and nonleading Lyapunov

k1(8,) [or k?(8,)] at the point(x,,y;, 1). The evolution ok, vectors are normalized to unity at any point of the torus

is d ibed by the Jacobi matrix of th , (3). We can consider the evolution of an qrbitrarily
's described by the Jacobi matrix of the mp chosen vector ko=(k,o,k;0,0) along the trajectory
Ky = J(Xo, Yo, 60)Ko. (4)  (X0.Y0.60),(X1,Y1,01), ... ,(Xq,Yn, 6) under iterations of the

R linearized map(4). Multiplying by the Jacobian matrix at
After n iterations the operatal™ of evolution of the vector each point of the trajectory and then normalizing, we obtain
is the map

‘Jm) = ‘](Xn—lvyn—l! en—l)J(Xn—Ziyn—Zi 0n—2) T ‘](X01y01 60) . I(r,1+:l_ = J(anyni en)kn!
Thus, we obtain a sequence of vectarsks,, ... k,, with
k,=J™k,, which are collinear to the Lyapunov vectors at the
respective points of the orbit. Now, in order to define the 6= 6 +w (mod ) ©6)
initial vectork,, we consider a subsequence of the trajectory k1= On T @ '

points which converges to the initial poifity,yo, 6). Since  As we know, in a typical case, after a sufficiently large num-
we have chosem equal to the inverse golden mean, we takeber of iterations, an arbitrarily assigned vector tends to the

Kne1= |kr’1+1‘_lkr,1+11
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(@) o (b) *2 © *
08 08
04 I
04 04
y 02 k; 0.0 k2 oo FIG. 2. (a) Attracting torus of
00 i s "M the map(2) ata=0.55,£=0.6. (b)
02 I ) - Plot of the functionkl(6) at a
04 08 08 =0.55,£=0.6[only odd iterations
07 03 01 05 09 13 -2 12 of the map(6) are plotted. (c)
x 00 02 04 06 08 10 00 02 04 06 08 10 Plot of the functionk2(6) at a
0 0 =0.55,£=0.6[image of the torus
(d) 12 (e) 12 )] o6 of the map(7)]. (d) SNA of the
oMM HAdLE | 08 ’ map (6) at a=0.559, £=0.6. (e)
B HIER (1Y i ' 04 SNA of the map(7) at a=0.559,
i HIE ‘ |4 04 02 £=0.6. (f) Attracting torus of the
k; 00 SO k2 oo y map(2) ata=0.559. We have cho-
04 i Hyt 00 sen b=0.5 for these and all the
. i { I 04 . )
Nt i 02 following figures.
o841 HIT z o8|kl -
Ao i 04
A A 07 03 01 05 09 13
00 02 04 06 08 10 00 02 04 06 08 10 x

o 0

direction corresponding to the largest Lyapunov exponenof the vector functionk(6). Hence, in the last case, the
(e.g., Ref[39]). Since we have chosdq, initially orthogo-  dependence of the leading Lyapunov vector upon the angle
nal to the phase axis, this direction will be given by thevariable is nonsmooth.

leading Lyapunov vectdk(6). Thus,k, tends to k() as In the same way, we can determine the nonleading
n— o, A plot of the function &*(#) may be interpreted as an Lyapunov vectork?(6), which corresponds to the second
image of the attractor of the mdg). Note that for any qua- nontrivial Lyapunov exponent. For this, we invert the map
siperiodic trajectory on the toru8) the valuesx, andy, are  (2) and consider an evolution of some arbitrary chosen
functions of the angle variablé,:x,=x(6,),y,=y(6,). This  vector k, under iteration of the inverse map along the
fact makes it possible to consider the m@) as a usual quasiperiodic trajectory on the tor(®). Taking into account
quasiperiodically forced map and allows us to use standard normalization of the vector, we represent the evolution
methods for the analysis of its dynamical regimes. For indmap as

stance, to obtain the leading Lyapunov vedtd(d,) at the

point (Xg,Yo, 6p) on the torus, we should start iterating Eqgs. 1 = I 7 (X Y, K,
(6) from the initial angled_[=60,—nw(mod 1)], wheren is
sufficiently large, with an arbitrarily chosen initial condition Kne1 = |Kppa 2K s
K.
Now let us consider possible types of attractors of the 0re1= 0, — @ (mod J). (7)
map (6). In the context of further numerical analysis, the
following three cases appear to be essential. HereJ-Y(x,y, 6) is the Jacobian matrix of the map inverse to

(C1) The map has two attractors represented by smootkhe quasiperiodically forced Hénon még). Since the maps
invariant curves kl( 9), which are Symmetric with respect to (6) and (7) are inverse with respect to each other, they pos-
the axis of angle variablé. sess identical invariant sets. Note that the attracting invariant

(C2) The map has one attractor, which consists of twoset of Eqs.(6) [defined as k()] is a repellor for the map
smooth curves k(6), visited alternately at iterations of the (7), while the attractor of the maf7) [given by #*Z(6)]
map. appears to be the repelling invariant set of the nt@p

(C3) The attractor of the map istrange nonchaoticrep-  Hence, under iterations of EqS) the vectork,, will tend to
resented by the nonsmodtrand double-valued function +k2(6,) asn— o.

+k1(9).

In casegC1) and(C2) the functionk() is differentiable. - . .
It implies a smooth character of the dependence of the lead- ' @ general case we should consider one more possitiGg)
ing Lyapunov vector upon the angle variable on the t¢8)s the attractor of the maf6) represents a three-frequency torus. In
The appearance of a strange nonchaotic attractor in the mé is case the vector-functida'(6) cannot be defined. This situation

. . . ... takes place when the quasiperiodic forcing is added to a system
(6) [case(C3)] provides evidence of a loss of differentiability with a focal fixed point. As we has already mentioned, the Hénon

- map does not possess such points bor0. However, the three-
2According to the results of Starlsee Ref[19]), an SNA cannot  frequency quasiperiodic regime may be observed in the sy@em
be the graph of a continuous function. Strictly speaking, the funcwhen we investigate the structure of the vicinity of a double torus

tion k1(6) must be nonsmooth and upper-lower semicontinuous. 2T or quadruple torus B of the map(2).
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(@) 157 | (b) 157
1.261 m 128
0.94 094§ 1 FIG. 3. Dependence of the anglebetween
(/)] Q Lyapunov vectors upon the angle coordinae
0.63- 0.63 (a) at a=0.556(slightly below the critical value
ay), £€=0.6, (b) at a=0.559 (slightly above the
031 U J' I 031 ’ critical valuea,), £=0.6.
oootl WYV T 0.00 il
00 02 04 06 08 10 00 02 04 06 08 1.0

0 0

Thus, the problem of the analysis of the dependences ahultaneously in Egs(6) and (7) at the critical valuea,
leading and nonleading Lyapunov vect&rs’ upon the angle =0.559. The plots of the functior‘ls}'z(a) at a=0.559 are
variable 6 is reduced to the analysis of the attractors of thepresented in Figs.(8) and Ze). Thus, the dependences of
maps(6) and(7) in the space of Lyapunov vectors. Smooth-the Lyapunov vectors upon the angle variable become non-
ness of the attractors represented by vector functiondifferentiable. Note that the attractor of the m@ still re-
+k1%¢) implies smoothness of the dependences ofmains a smooth torus, as shown in Fi¢f) 2The transition to
Lyapunov vectors on the toru8) upon the angle variable. SNA in this map(2) occurs only a&;=0.656.

The onset of strange nonchaotic attractors in the niéps A smooth torus characterized by nonsmooth dependences

and (7) indicates the loss of smoothness of the dependencds?(¢) can be observed for all values of the parameter

of Lyapunov vectors k!? upon the angle variablé and, as  within the intervalae[a.,a;). Numerical analysis shows

a consequence, the destruction of smooth 2D invariant manihat besides this interval there are other intervals efith

folds in a vicinity of the nodal torug3). nonsmooth dependences of the Lyapunov vectors upon the
angle coordinatea e[0.266,0.41% and a<[0.484,0.521.
However, we emphasize that this is the first intefal a;),

lll. LOSS OF DIFFERENTIABILITY OF THE which is important for an explanation of the direct transition
DEPENDENCE OF LYAPUNOV VECTORS UPON from smooth torus to SNA without torus-doubling bifurca-
THE ANGLE VARIABLE tion in the system(2). Nonsmooth dependence of the

Lyapunov vectors upon the angle variable e [a.,a;)
makes the torus-doubling bifurcation impossible, and in this
; ot the smooth torus directly transforms into the SNA via a
(7) in the Lyapunov space under variation of the parameter case o . ;
At a=0.55 the attractor of the ma@) is a smooth torus 9radual fractalizatiorfas described in Ref25)).
[Fig. 2(@]. The attractor of the ma(8) is a double torus; i.e. Now let us consider the process of destruction of smooth
it is represented by a pair of smooth curvesi®), wh,ich ' dependencels’4(6) in some detail. For this purpose we need

map onto each other under iteration. The resulting plot of thd® calculate the anlgzle(e) between leading and nonleading
function k)l((a) is presented in Fig. (B). The map(7) pos- Lyapunov vectoriié on the tor_us as a function @ Since
sesses two attracting invariant tork%6), which are sym- we have chosefk™%(¢)|=1, we immediately get

metric with respect to the axis of angle varialsleThe plot - 10y . 12

of the functionkﬁ(e) is shown in Fig. 2c). One can see that #(0) = arccogk™(60) - k(0)].

both functionsk}%(#) are smooth: the Lyapunov vectors de- Then we take the least of the two anglesr (7/2-¢). The
pend smoothly upon the angle varialgleAs a is increased, plot of the functione(6) for a=0.556 (slightly below the
the smooth vector functionsk®%( ) corresponding to attrac- critical valuea,) is shown in Fig. 8a). This function is piece-
tors of the map$6) and(7) become more and more distorted wise differentiable(several fractures on the plot are associ-
at small scales, until strange nonchaotic attractors arise sated with our choice ofp € [0,#7/2]). One can see that the

(@) (b)

Let us fixb=0.5 ands=0.6, and consider the evolution of
the attractor of the maf®) and the attractors of Eq&) and

2400 - : 2400
FIG. 4. Histograms of the angle between
P(¢) 1800 1 i = 1800 1 i Lyapunov vectorsta) for a trajectory on the torus

1200 - (w) 1200 ata=0.6,¢=0.6, (b) for a trajectory on SNA at
a=0.66,£=0.6. The length of trajectory segment
600 1 I 600 1 I is 10 iterations.

0 T T T T 0 T T T v
0.00 031 0.63 0.94 1.26 1.57 0.00 031 0.63 094 1.26 1.57

@ 4
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1023 Figure 4a) shows a histogram of the distribution of the
] 2 angle ¢ along a segment of a typical trajectory of length
0'°. 4 M=10° on the smooth torus @&=0.6. The histogram shows
1 3 1— that the probability density function is nonzero for small
(I)M ] angleso. In Fig. 4b) we see an analogous histogram of
1044 anglese for a segment of trajectory on the SNM=10) at

a=0.66. In both cases the anglg,,(6,,M) decreases and

N approaches arbitrarily close to zero as we examine longer
1073 and longer segments of the trajectory. This result does not
depend upon our choice of the initial phageTo show it, let
us consider the maximum value @f,,(6,, M) with respect

10°  10*  10®  10°

M to trajectories with different initial phases:
FIG. 5. Plot of the functiond,, for 100 trajectories with ran- ®y = max emin(0,M).
domly chosen initial angle variable on the torgdot 1, a=0.6, ¢ fp<[0.1]

=0.6 and on the SNAplot 2,2=0.66,¢=0.6. A plot of this function obtained with an ensemble of 100

trajectories on a smooth torugt a=0.64 with randomly
chosen initial phaseg, is presented in the Fig. 5, plot 1. One

lot of ¢(#) approaches the axis=0 very closely. The mini-
P #(0) app = y y can see that for sufficiently lardé the functiond,, behaves

mum anglegi,=min,. o 1¢(6) between the Lyapunov vec-
o as

tors decreases and becomes infinitely close to zero, as thé

parametera approaches the critical valug; see Fig. &). Dy ~ M7,

Actually it remains uncertain whether the minimum angle

goes strictly to zero. However, in numerical experiments wevhere y=-1. Thus, our conclusion concerning zero lower

failed to find a lower bound for the angle distinct from zero. bound for the angle is valid for all or almost all trajectories

Thus, we conjecture that the loss of smoothness of the dén the smooth torus. Hence, we can neglect the dependence

pendencek¢) is associated with situations, when the Of the minimum anglepn;, upon the initial phas: ¢min

leading and nonleading Lyapunov vectd6) andk3(6) = ®@min(M). Note that the same results for the minimum angle

coincide at some values of the angle variablen the torus. ~ $min Were obtained for trajectories on SNA, as seen in plot 2

Note that, due to ergodicity of the angle variatslecoinci- ~ Of Fig. 5, ata=0.66. S

dence of the vectork! and k? at one point of the ergodic The same properties of.the distribution of the angle

torus implies presence of a dense set of such coincidences Yiere observed for trajectories on smooth torus and SNA at

images and preimages of this point. all tested values e [a.,a;). In order to illustrate this state-

In order to confirm the conjecture made in the previousment, let us fix a lengtiM of a trajectory segment and con-
paragraph, let us consider the distributions of the angle Sider the dependence of the minimum anglg, upon the
along typical trajectories on invariant curve for valuesaof Parametera: ¢min=¢min(M,a). Figure 6 shows the depen-
above the critical value,. Our interest is focused on the dencesppy(a) for two fixed valuesM=10" (a) andM=10°
lower bound of such distributions. Since, in the numerical(b). Comparison of these plots illustrates the effect of an
computations we deal with, the trajectory segments of a fiincrease inM. One can observe a significafuf an order of
nite length, we will observe the minimum value of the anglemagnitud¢ decrease of the minimum angfg,i, asM grows
¢ obtained along sufficiently long segment of a typical tra-from 10* to 1C.
jectory. For a trajectory segment &fl iterations starting We also note the following fact as worthy of note. For the
from the initial phased, we define case of chaotic systems, interest immediately focuses on the
properties of chaotic saddlésee Ref[39] and works cited
therein. The chaotic saddle is hyperbolic if all angles be-
tween the stable and unstable directigmghich coincide

in(6o;M) =" min 6p). . )
#min{ b M) n=0,1,...M (6 with the Lyapunov vectojsare uniformly bounded away

(a) 0.0030 : . . (b) 0.0030
0.0024- 0.0024
0.0018- 0.0018 { : FIG. 6. The effect of increase of the trajectory
-~ in segment lengthM on the minimum angle be-
0.00127 0.00121 [ tween Lyapunov vectors: dependengg(M,a)
0.0006 0.0006 - I versusa for (a) M=10* and (b) M=10P.
0000 0.0000 -
056 058 0.60 062 0.64 0.66 056 058 0.60 0.62 0.64 0.66
a a
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@) a (b) a
00 02 0. 6 08 10 080 083 086 089 092 095
-7 010 g : FIG. 7. Parts of the parameter plane of the

map (2) at the fixed valud=0.5. The regions of

existence of a torusT (1,2), double torus
2T (3,4,5), and quadruple torusT4(6,7,8) are
G0 divided into subregions in accordance with
& & smooth, nonsmooth, or undefined dependence of
004 .
the Lyapunov vectors upon the angle variable.
— The light gray(1,3,6), gray (2,4,7), and white
(5,8) tones denote the regions of smooth, nons-
0.00 mooth, or undefined dependence, respectively.
The regions of SNA and chaos are shown in dark
gray and black, respectively. In the patterned ar-
a eas the mag2) has no attractor. The curvés;

054 057 060 and D, correspond to the first and second torus-
doubling bifurcations. The curve; between the
regionsl and?2 denotes the border of the loss of
smoothness of the vector functiohs-%6). (a)
The general parameter plan@g) The enlarged
fragment in the area of the second torus-doubling
bifurcation. (c) The enlarged fragment near the
terminal point of the first torus-doubling bifurca-
tion curve.

from zero. Otherwise, the chaotic saddle is referred to ag, double torus Z, quadruplicate torus® etc) have a nega-
nonhyperbolic. The properties of tHaonhyperbolicity of  tive Lyapunov exponenfo;<0) without phase sensitivity
chaotic saddles in the Hénon map were studied in B&.  (6=0). The symbolsT, 2T, and 4T below the planes indicate

In this context, our results for the distributions of anglesintervals of the parametey, in which the respective smooth
between the Lyapunov vectors for trajectories on a smoothori exist ate=0. The light-gray tone corresponds to regions
torus and a SNA seem rather intriguing. One can comof quasiperiodic dynamics characterized by the smooth de-
pare Figs. 4a) and 4b) of the current paper with the analo- pendence of the Lyapunov vectors upon the angle variable on
gous Fig. &) of Ref.[39] and our Figs. @) and &b) with torus(the indicesl, 3, and6 correspond to the toﬂl',_ 2T, and _
Figs. 1%a) and 11b) of Ref. [39]. The numerical results 4T, respectively. The gray tone shows the regions of tori
for the angle distributions are very similar, although we con-With nonsmooth dependence of the Lyapunov vectors upon
sider nonchaotic trajectories on a smooth torus and a SNANE angle variabl€2, 4, and7 correspond td, 2T, and 4).
while the authors of the work39] deal with nonhyperbolic In the regions shown in white the Lyapunov vectors on tori

chaotic saddles. Thus, we can conclude that on the routd® not definedS and8 correspond to 2 and 47). The area

from quasiperiodicity to chaos the angles between thég Cag?t:n?jygﬁ;;%?;; ?%;Sha%wgI'\lnAb::I;QSB?ntV\{ﬁznrtehﬁon
Lyapunov vectors may go to zero before the destruction of éh%wn in dark-gra tong Thié intermediate type of attra?:tor
regular motion and onset of a chaotic dynamics. We believé gray : yp

hat thi ST ! . ialE. chgracterized by pggative Lyapunov exppnézm1<0)
tsts;[j)t/. Is observation is interesting and may merit a SpEmlawnh high phase sensitivity5>0). In the area filled by pat-

tern, the mag2) has no attractor, and the trajectories escape
to infinity.

Let us consider mechanisms of dynamical transitions in
the parameter plane in some detail. In regidnand 2 the
attractor of the syster®2) is a smooth torus. In regiohthis

Let us now consider the configuration of regions of dif- torus is characterized by a smooth dependence of Lyapunov
ferent dynamical behavior in the parameter space of the mayectorsk%(6) upon the anglé, as shown in Figs. (®) and
(2). Figure 7 shows three fragments of thes parameter 2(c). In region2 the vector function& % 6) become nondif-
plane at the fixed valub=0.5. In order to distinguish non- ferentiable[see Figs. @) and Ze)]. The transition fromil to
chaotic and chaotic dynamical regimes on the paramete? is associated with the mechanism described in the previous
plane, we calculate the largest nontrivial Lyapunov exponensection.
oy. On the other hand, smooth tori and strange nonchaotic When crossing the lin®; on the border of the regiors
attractors may be distinguisehd via calculation of the phasend 3, the torusT becomes unstable and bifurcates to the
sensitivity exponent, which measures the sensitivity of a double torus Z. An example of the double torus of the map
trajectory on an attractor with respect to a variation of the(2) ata=0.315,=0.3(region3) is shown in Fig. 8a). Since
angle variabled (see Ref[15]). Smooth attractor&.g., torus  the double torus P consists of two smooth branches,

IV. STRUCTURE OF THE PARAMETER SPACE
OF THE QUASIPERIODICALLY FORCED HENON MAP
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9

2T:{(x.y,0) € R? X TYx=x1(6),y=y?(6),0  [0,1)}, {y@(ﬁj), j=2m,
=

~ly®(g), j=2m+1.

2T,:4(xy,0) € R? X TYx=x?(6),y=y?(6),6 € [0,1)},

In the same way, one can determine the nonleading
we need to introduce two pairs of vector functidks¢)  Lyapunov vectorks(6p) or k3(fp). For this purpose one
(i=1,2 to characterize the dependences of Lyapunov vecshould iterate the mayp7) from the initial angled, [=6,
tors upon the angle variable on the double torus. Let the pait Nw (mod 1], wheren is a sufficiently large natural num-
of vector functionii'z(e):(kif(a),k;f(&),@ determine the ber, with an arbitrarily chosen initial vectds,, and the de-
leading and nonleading Lyapunov vectors on the brahgh Pendenceg=x(¢) andy=y(6) are given by formuld8) and
while the pairk3%(6)=(k;7(6),kj5(6),0) be associated with  (9).
the branch Z,. In order to numerically obtain the value of  The plots of the function&},(6) andk},(¢) at a=0.315
the leading Lyapunov vectdei(6y) at the point(xy,yo,8,)  @nde=0.3 (region 3) are presented in Fig.(8), while Fig.
€ 2T, We can start iterating the ma) from the initial  8(C) shows the plots okZ,(6) andkZ,(6). One can see that
angled_, [=6,—nw (mod 1)], wheren is a sufficiently large  all these functions are smooth. Hence, the Lyapunov vectors
natural number, with an arbitrarily chosen initial veckar, ~ smoothly depend upon the anglen the double torus at the
Note that the variablesandy in the map(6) are functions of ~ respective parameter values. On the other hand, in region

the angle variabl®, and in this case they must be defined asthe double torus is characterized by the nonsmooth depen-
dence of Lyapunov vectors upon the angle variable. An ex-

xD(g), j=2m, ample of the double torus of the m4p) at a=0.33 ande
Xi=1 2 0) i=om+1 =0.3 (region 4) is presented in Fig. (8). Figures &) and
x2(g), j=2m+1, 8(f) show the plots of the nonsmooth functiokl,%l(a) and
k2,(6) at the same parameter values. In regsavicinity of
y(1>(9].), j=2m, the double torus is of a focal type: therefore, Lyapunov vec-
Y= v2(0), j=2m+1 (8)  tors are not defined. In this situation the attractors of the
i ' maps(6) and(7) represent three-frequency tori.

The line D, on the border of region8 and 6 [see the
enlarged fragment of the parameter plane in the Fig)]7
corresponds to the second doubling bifurcation, in which the
double torus Z bifurcates to the quadruplicate torus.4rhe
latter is characterized by four pairs of vector functions
kil'z(a) (i=1,...,9, which give the dependences of the
Lyapunov vectors upon the angle varialsleon each of the

wherem is a natural number such thatdn=<n/2. Varying
6, within the interval[0), we will obtain the full dependence
ki(6). On the other hand, in order to find the vedtg(6,) at
the point (Xg,Yo, o) € 2T,, one should iterate the ma(®)
from the initial angled_, with an arbitrarily chosen initial
vectork_, and with the following conditions fox andy:

four branches %; (i=1, ...,9 of the quadruplicate torust4
x2(6), j=2m i i
% = 1/ ' The regions corresponding to smoothness and nonsmooth-
e, j=2m+1, ness of the vector functiorg"%() (i=1,...,4 are denoted
(a) (b) 12 (C) 12
05 —————
. Y VAR o.a-%—/
03 04 041
1 2
y o k1200 x1,200 2 FIG. 8. (a) Attracting double
04 , 04 0.4 torus of the map2) at a=0.315,
08 2 08 £=0.3 (digits 1 and 2 are related
03— ’ to the branches T and 2T,). (b)
’ ’ ’ ’ ’ ’ -1'20.0 02 04 06 08 10 ) '20_0 02 04 06 08 10 The p|0tS of the fUnCtiOﬂk)]{l(H)
x 0 0 andkl,(6) ata=0.315,6=0.3.(c)
(d) (e) )] Plots of the functiongé(6) and
12 124 K2,(6) ata=0.315,£=0.3. (d) At-
05 — 0slH oa N FTTTING MET) f tracting double torus of the map
! i1 SEE (2) at a=0.33,£=0.3. (¢) Plot of
03 o4 o414 the functionk’,(6) at a=0.33, s
04 k! 00 2 g0l =0.3. (f) Plot of the function
Y = =l KZ,(6) ata=0.33,6=0.3.
04| 041.
0.1 2 - e
o8{li:|: 08,
03 it . H
05 02 01 04 07 10 1.2 12
00 02 04 06 08 10 00 02 04 06 08 10
* o 0
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as6 and7, respectively. In regioB the Lyapunov vectors are V. ANALYSIS OF RATIONAL APPROXIMATIONS
undefined. This corresponds to the focal structure of a vicin-

ity of the quadrupllcate torusm N the torus-doubling bifurcation line is provided by the method
Based on Fig. 7, one can make the following importanty¢ 4iional approximation, which is widely used for analysis
observation: the torus-doubling bifurcations occurs on pasat Hamiltonian and dissipative systems. In application to the
sage between the regions characterized by smooth depegasiperiodically forced systems the idea of the method con-
dence of the Lyapunov vectors on the torus upon the anglgists in the following(see Refs[5-7,15). The irrational pa-
variable:1—3, 3—6. Indeed, the smooth dependence of rameter of frequencw in the map(2) can be approximated
Lyapunov vectors upon the angle variable on the “parenthy a sequence rational valueg, such thatw=lim, ... w.
torus is necessary for the doubling bifurcation could takeFor the case of the golden mean, the sequence of approxi-
place, and the “newly born” torus is also characterized bymants{wy}=01 .. iS given by the ratios of Fibonacci num-
smooth vector functiong!%(). Figure 7c) shows the en- bers: w,=F_;/F,, WhereF,;=F,+F,_; with Fo=0 andF;
larged fragment of the parameter plane in the region wherel. For a definite level of approximatidg we consider an
the termination of the torus-doubling lifi, occurs. In order ensemble of maps
to understand the mechanism of this phenomenon, note that
the line F; corresponding to the loss of smoothness of the
vector functionsk®?(6) intersects with the lineD; at

Another way to explain the mechanism of termination of

Xne1= &= Xa+ Y, + & COS 26,

(@",s")=(0.554 78,0.528 46 If the paramete is fixed Yne1 = DX,
at s<s(cl) and the parametet is varied, one can observe a
transition between the regioris— 3. For the cases > & One1= bn+ @y (Mod 1), (10

C

such transition becomes |mp_oss;ble due to the 10ss Ofyhich are forced periodically with the same rational fre-
smoothness of the vector-functié%6). Note that a vicin- quencyw, and with different values of the initial angié.
ity of the torus-doubling terminal point contains parameterthe attractor of the mafil0) depends upon the initial angle
values related to the regions of different dynamical behaviory,. Changingg, continuously in the whole intervg0, 1/F,],
quasiperiodicity(1, 2, 3, 4), SNA, and chaos. we obtain thekth approximation of the attractor of the map

The line of the second torus-doubling bifurcatibg ter- (2) as a union of all occurring attractors of the map). We
minates a(aff),sf:z)) =(0.873 64,0.074 71 Although we did  suppose that the properties of the original syst@can be
not study this phenomenon in detail, we found that it is alsgobtained in the quasiperiodic limit &t— co.
associated with the loss of the smoothness of the depen- An approximating set of ordek for an attracting torus
dences of Lyapunov vectors upon the angle variable.sFor represents a smooth set of stable periodic orbits of pétjod
< the double torus P may undergo bifurcation to the Note that the approximating orbits may be of two types:
quadruple torus B under variation of the control parameter node and focus. Let us consider a periodic orbit of the map
a. Fors>¢? such a bifurcation appears to be prevented by(10) ~ that  starts from the initial _angle 6
the loss of smoothness of the vector functioks%(6)  (Xo:¥o,00),(X1,¥1,601), ... .(Xr,-1,YF,-1, 0 -). The mono-
(i=1,2. dromy matrix of the periodic orbit is

On the other hand, one can see that the transitions from - -
quasiperiodicity to SNA occur on coming out of the regions 3" “(Xo.Yo. 6o) = I(Xr, -1, YF, -1, O 1)
of quasiperiodic regimes characterized by nonsmooth vector - -
functionsk>%6): 2— SNA, 4— SNA, and7— SNA. Note XI(X, -2, YF,-2:OF 2) "= I(X0, Y0, 0o)
that a specific mechanism of the birth of an SNA depends (112)
upon the choice of the parameter values. For the case of the
transition2— SNA, this mechanism may consist in a gradual Since the given orbit belongs to a smooth approximating set,
fractalization of the toruf25,30 or an intermittency32,33.  the variablesx andy in Eq. (11) are functions of the angle
For the the case of the transitiod&7) — SNA, a collision of  variable 6 [xo=X(6o), Yo=Y(6p), etc], and we can write sim-
the attracting doubléquadruple torus with a parent saddle ply JFW(g,). The type of the periodic orbit is determined by
torus (Heagy and Hammel mechanisi4,30) may occur  the values of the multiplierg.[, which represent the non-
besides torus fractalization and intermittency. All of thesey; s eigenvalues of the matri>21<Fk)(00). The multipliers

mechanisms have irregular, phase-dependent character. - L Fe—  Fy

Thus, he appearance of a nonsmooi cependence of EPETY IPOR e e ool o Wi

Lyapunov vectors upon the angle variable on the torus al- . ™ . " P ’ YpE; ot
. L wise, it is a focus. The Lyapunov exponents of the orbit are

ways precedes the destruction of a regular quasiperiodic MO fined as

tion and the onset of a strange nonchaotic attractor via phasg-

dependent mechanisms. On the contrary, regular torus- oFK(0) = (L/E)INl P 6

doubling bifurcations require the existence of a smooth 1(60) = (1/FIN|uy 5 6)].

vector-functionskil'z(e). In this sense we can claim that cal- Note that the values o(frikz may be interpreted as approxi-

culations of the Lyapunov vectors make it possible to predicmants of local(finite-time) Lyapunov exponents ove¥, it-

regularity or irregularity of further torus bifurcations. erations of the quasiperiodically forced Hénon map.
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In the same way, approximants of the leading and non- (S(6p)/2)? < b« (12)

leading Lyapunov vectork}:'z(ao) can be defined as eigen- _ o ]
k holds. For this case, the approximating set can possess orbits

vectors of the matrid™(6), of both nodal and focal type.
- As an example, let us consider the systénat the pa-
(Fp) 1,2 _ F 1,2
JrK (HO)ka(GO) - f“l,kz(ao)ka(‘gO)' rameter valuea=0.34,=0.6, andb=0.5, which correspond

and they depend upon the initial angle Let us analyze the to the case of existence of the nonsmooth dependences

1,2 B . _
structure of the approximating set of periodic orbits, corre-k (9). In order to illustrate thg e?<|stence of .phz_;lse
sponding to different values of the initial angt. In the dependent structure of the approximating set of periodic or-

quasiperiodic limit(k— o) we find the following three cases bi;[s, we have cFomputed the nontrivial Lyapunov exponents
to be possible o1%=(1/FIn|urk| as functions of the initial angle variable
(C1) As the value ofg, is varied, one can observe a tran- % Within the ir;terval[O,l/Fk). Figure 9a) shows plots of
sition of the multipliers u5(8,) from real to complex- the functionsay'(6o) f(;r the odd period of approximation:
conjugate values. Thus, the approximating set includes perffk=25- ;I'he exponend correspondFs to the negFatlve multi-
odic orbits of two types: nodal and focal. Such “mixed” Plier (x1*<0), while the exponentry* (=Infb|-o7¥) corre-

structure of the approximating set of orbits persists as théponds to the positive multipligius<>0). One can see that
order of approximatiork is increased. the interval[0,1/F,) turns out to be subdivided into three
(C2) The multipliers Msz(go) are real for allg, from  segmentsA, B, andC. Within the subintervalé andC the
the interval[0,1/F,). Thus, the approximating set consists condition o< g5¢<(1/2)In|b|<¢ k<0 holds (respec-
of periodic orbits of nodal type. However, for some valuestively, 0< u5k<bf¥2<-pfk<1). Thus, the approximating
of 6, the conditi0n|,ufk| = |Mgk| holds, while for other values Lyapunov vectok,%k is leading within these subintervals, and
of 6, the opposite is validiu54>|uf4. In other words, this the exponenu’k is the largest of finite-time Lyapunov expo-
set has nonhomogeneous structure in the sense that the leagnts. In the subintervaB the backward condition o=
ing Lyapunov vector may transform into the nonleading one< afk<(1/2)ln|b|<cr§k<0 holds (respectively, @<,uf'<
and back, as the value @ is varied. Such “nonuniform”  <pf¥?<-,fk<1). Hence, the approximating Lyapunov
structure of the approximatirjg_set of orbits persists as theectorkﬁk appears to be leading in the subinterBaland the
orderk of the approximation is increased. __exponentoh* becomes the large$tOn the border of the in-
(C3) The approximating set for the smooth torus consistsepyals there are two of such pOinﬂéz, Where“gk(glz)z

of periodic orbits of the same tyg@oda). The set has uni- _ Ek(e*l ,)=bF¥2. We have tested rational approximants with

form structure in the sense of absence of the exchange of tl’ié:ge odd period§, up toF,=4181 and found that the struc-
leading and nonleading Lyapunov vectors. K K

.. ture of the interval0, 1/F,) remains qualitatively the same
In caseg(C1) and(C2) the structure of the approximating .as the levelk of rational approximant increases. However,

se_t Cf”‘”_b‘? referred to as “phase depend_ent._ In the quasiie guantitative features of the interval structure may change
eriodic limit, the phase-dependent approximating set forms ith k. Let us denote the relative lengths of the subintervals

torus which is characterized by a nonsmooth dependence Q .

. , B, andC as p,, pg, andpc, respectively(note that the
the Lyapunov vector&™(6) upon the anglg va_nable. On sum length of Zﬁ spuBbinter\?gls is pnormali);(ed to unifys
the other hand, cag€3) corresponds to a situation when the +pg+pe=1). Figure 9b) shows the dependence of the rela-

)
dependencie™(6) are smooth. tive length parc (=pa+pc) upon k. One can see that the

th I?(;::]ore a s:_udy 9[f thte étructu(r)e r?f approxtl_matj]ng ss_t, dnot ependence has irregular character. Note that none of the two
at the one-time-terate maf ) as negative Jacobi de- componentgpa.c and pg) decays to zero as the levielin-
terminant(J=-b). The superposition oF, maps(10) will creases

possess the J_acobidn(—b)_Fk. Hence, we nee_d to consider Figure 9c) shows the dependences of the Lyapunov ex-

separately rational approximanis=Fy-,/Fy with odd and  4nentseF upon the initial angles, for the approximating
even periods,. Indeed, the matrixF¥(6) has the form set of periodic orbits in the case of even perig=34. In

this figure the interval0, 1/F,) is divided into five subinter-
. J11(6o)  J12(60)  J13(6o) vals. Within the subintervald, C, andE the values of mul-

JFR(80) = I1(00) Joal60) Ja(60) |- tipliers [ are real. Hence, the corresponding stable peri-

0 0 1 odic orbits are of nodal type. On the other hand, within
subintervalsB andD the condition(12) holds. The periodic

The nontrivial multipliers of the periodic orbjt1(fo) are  orhits within subintervalsB and D are characterized by
defined as

Mif(z( 6o) = S(6)12 £ \[S(6)/12]% - (- b)F¥, “Note that the values inkz are negative over all the intervag
) o B, and C, and the approximating set consists of stable periodic
whereS(6) =J11(6) +J22( o). Since we have originally cho-  orpits only. Sincerts, may be interpreted as approximants of finite-
senb>0, the multipliers are always real for the case of oddtime (over F, iterations Lyapunov exponents, we see that the ap-
values ofF,. Hence, all the approximating orbits of odd pe- pearance of a nonsmooth dependence of the Lyapunov vectors upon
riod are nodal. On the other hand, for evgp values of the  the angle variable does not result in the appearance of a local insta-
angle §, can exist such that the condition bility.
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complex-conjugate multiplien’émfk:(,ugk)* ]. The transition  odd periodF,, each periodic orbit of the set undergoes dou-
from regionA to regionB implies a change of the nodal type bling bifurcation along the leading Lyapunov direction,
of orbit to the focal type. Analyzing the structure of the in- which is associated with the negative multiplies. How-
terval[0, 1/F,) under increase df, we found that it remains ever, the Lyapunov vectok® appears to be leading only
qualitatively the same for large, evép. However, the quan- Within segmentsA and C of the interval[0,1/F,), as we
titative features change witkk The sum length of the inter- have shown above. Within the segmenthe condition holds
vals of nodal orbitspa.cse (=pa+pc+pe) dominates over -bF2< ubk<0. Hence, the periodic orbits within the seg-
the sum length of the intervals of focal orbitgg,, MENtB cannot undergo a doubling bifurcation. For the case
(=pa+Pp). In Fig. Ad) we have plotted the sum length,,  ©°f @n approximation with even peridg, there are two sub-
(double-logarithmic scajeversus the period, (logarithmic intervals(B andD), in which the periodic orbits are charac-

scale. Since the conditior(12) is applicable to both even terized by complex-conjugate multipliers. Obviously, the re-

S . spective periodic orbits cannot undergo doubling bifurcation.
and odd approximations, we consider both even and odd pé Note that the phase-dependent nonuniformity in the struc-

riods Fy in order to obtain a representative plot. One can S€§,re of the approximating set makes other regular torus bi-
thatl the points on the plot can be fitFed by a straight line forfurcations(symmetry breaking, saddle-nodenpossible, be-
sufficiently largeF,. Hence, the relative lengips.p decays  giges the torus-doubling bifurcation. Indeed, regular torus
as exponent of the perid§, of approximatior. bifurcation occurs when all orbits corresponding to different
If the approximating sets of some torus possess phasgnitial anglesd, on a torus bifurcate in a similar way. The last
dependent nonuniformity of the described type and this nonrequirement is obviously impossible for the case of the
uniformity persists in the quasiperiodic limit, the correspond-phase-dependent nonuniform structure of the approximating
ing torus cannot undergo a doubling bifurcation. Indeed, leset described above. Hence, the given torus can undergo evo-
us consider the mechanism of the doubling bifurcation of dution and destruction according to phase-dependent mecha-
torus from the viewpoint of bifurcations of the approximat- nisms only. In other words, under a variation of the param-
ing periodic orbits. For the case of an approximation witheters of the mag2) such a torus disappears with the onset of
a strange nonchaotic attractor or of the divergence of trajec-

>This result correlates with an analogous exponent law obtaine&or',es' This COQCIUSIOH is confirmed by the numerical obser-
for the rational approximations of the phase-dependent saddle-nodétions made in Sec. IV on the structure of the parameter
bifurcation in the quasiperiodically forced circle méRef. [41]).  SPace of the quasiperiodically forced Hénon map.
We suppose this coincidence to be not fortuitous and to indicate a
close relationship between the maps in Lyapunov si@ceand (7) VI CONCLUSION
and the quasiperiodically forced circle maps. This problem merits a In the present paper we have observed a transition which
special study. consists of the appearance of a nonsmooth dependence of the
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Lyapunov vectors upon the angle variable on torus in thehe torus, plays a key role in different scenarios for the tran-
quasiperiodically forced Hénon map. Although the attractorsition from regular motion to chaos in quasiperiodically

of the system typically remains a smooth torus after suchiorced systems.

transition, this torus cannot undergo regular doubling bifur-  Of course, in a real physical system some noise is inevi-
cations. We have shown that this transition terminates th@aple. The question arises whether calculations of the
line of torus-doubling bifurcation on the parameter plane ofi yapunov vectors are reliable in real systems. To answer i,
the model map and restricts the number of torus-doublingne can consider maps in the Lyapunov spéeand (7)

bifurcations on the route to chaos. The presence of a smootfiih an additional conditiorx =x(6,)+ &, whereé, is a
or nonsmooth dependence of the Lyapunov vectors upon the nn "

. d ..~ noise variable ang is a noise amplitude parameter. Accord-
angle variable on the torus determines whether torus bifur: 9 P P

cations under variation of the parameters of the system wiILng to the resul_ts of40], an SNAin a quaslperlod|cally

be regular or irregular. The transition always precedes th orped _systems is robust with rgspect t_o adqmon of a small

destruction of quasiperiodic motion and the birth of a strangém'Se signal. Hence, the dynamical regimes in the Lyapunov

nonchaotic attractor via irreguldphase-dependeninecha-  M'aPs would not change due to a small noise. Therefore, we

nisms. expect our analysis to be valid in real oscillatory systems
We believe that the arguments of this paper concerning‘”der external quasiperiodic forcing in the presence of noise.

the mechanism of torus-doubling bifurcation can also be ap-

plied to other regular torus bifurcations—namely, symmetry

breaking, transcritical, and saddle-node bifurcations. One can ACKNOWLEDGMENTS
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